示例#1
0
文件: closest.py 项目: zonakre/gasp
def polygons_to_facility(netdataset,
                         polygons,
                         facilities,
                         outTbl,
                         oneway=None,
                         rdv=None,
                         junctions=None,
                         save_result_input=None):
    """
    Execute the Closest Facility tool after calculation of polygons
    centroids
    """

    from gasp.cpu.arcg.lyr import feat_lyr
    from gasp.cpu.arcg.mng.feat import feat_to_pnt
    from gasp.cpu.arcg.mng.fld import add_field
    from gasp.cpu.arcg.mng.fld import calc_fld
    from gasp.cpu.arcg.mng.joins import join_table

    arcpy.env.overwriteOutput = True

    # Polygons to Points
    polLyr = feat_lyr(polygons)
    pntShp = os.path.join(
        os.path.dirname(polygons),
        os.path.splitext(os.path.basename(polygons))[0] + '_pnt.shp')
    pntShp = feat_to_pnt(polLyr, pntShp, pnt_position='INSIDE')

    closest_facility(netdataset,
                     facilities,
                     pntShp,
                     outTbl,
                     oneway_restriction=oneway,
                     rdv=rdv,
                     junc=junctions)

    field_output = 'dst' + os.path.splitext(os.path.basename(facilities))[0]
    add_field(outTbl, field_output[:10], "FLOAT", "10", "3")
    calc_fld(outTbl, field_output[:10], "[Total_Minu]")

    if save_result_input:
        add_field(outTbl, 'j', "SHORT", "6")
        calc_fld(outTbl, 'j', "[IncidentID]-1")
        join_table(polLyr, "FID", outTbl, "j", field_output[:10])
示例#2
0
文件: popaccess.py 项目: zonakre/gasp
def arcg_mean_time_WByPop(netDt,
                          rdv,
                          infraestruturas,
                          unidades,
                          conjuntos,
                          popf,
                          w,
                          output,
                          oneway=None):
    """
    Tempo medio ponderado pela populacao residente a infra-estrutura mais
    proxima (min)
    
    * netDt = Path to Network Dataset
    * infraestruturas = Points of destiny
    * unidades = BGRI; Freg; Concelhos
    * conjuntos = Freg; Concelhos; NUT - field
    * popf = Field with the population of the statistic unity
    * w = Workspace
    * output = Path to store the final output
    * rdv = Name of feature class with the streets network
    """

    import arcpy
    import os
    from gasp.cpu.arcg.lyr import feat_lyr
    from gasp.cpu.arcg.mng.feat import feat_to_pnt
    from gasp.cpu.arcg.mng.fld import add_field
    from gasp.cpu.arcg.mng.fld import calc_fld
    from gasp.cpu.arcg.mng.joins import join_table
    from gasp.mng.genze import dissolve
    from gasp.mng.gen import copy_feat
    from gasp.mob.arctbx.closest import closest_facility

    def get_freg_denominator(shp, groups, population, fld_time="Total_Minu"):
        cursor = arcpy.SearchCursor(shp)

        groups_sum = {}
        for lnh in cursor:
            group = lnh.getValue(groups)
            nrInd = float(lnh.getValue(population))
            time = float(lnh.getValue(fld_time))

            if group not in groups_sum.keys():
                groups_sum[group] = time * nrInd

            else:
                groups_sum[group] += time * nrInd

        del cursor, lnh

        return groups_sum

    arcpy.env.overwriteOutput = True
    arcpy.env.workspace = w

    # Start Procedure #
    # Create copy of statitic unities to preserve the original data
    copy_unities = copy_feat(unidades,
                             os.path.join(w, os.path.basename(unidades)),
                             gisApi='arcpy')

    # Generate centroids of the statistic unities - unidades
    lyr_unidades = feat_lyr(copy_unities)
    pnt_unidades = feat_to_pnt(lyr_unidades, 'pnt_unidades.shp')

    # Network Processing - Distance between CENTROID and Destiny points
    closest_facility(netDt,
                     rdv,
                     infraestruturas,
                     pnt_unidades,
                     os.path.join(w, "cls_table.dbf"),
                     oneway_restriction=oneway)
    add_field("cls_table.dbf", 'j', "SHORT", "6")
    calc_fld("cls_table.dbf", 'j', "[IncidentID]-1")
    join_table(lyr_unidades, "FID", "cls_table.dbf", "j", "Total_Minu")

    # Calculo dos somatorios por freguesia (conjunto)
    groups = get_freg_denominator(lyr_unidades, conjuntos, popf)
    add_field(lyr_unidades, "tm", "FLOAT", "10", "3")

    cs = arcpy.UpdateCursor(lyr_unidades)
    linha = cs.next()
    while linha:
        group = linha.getValue(conjuntos)
        t = float(linha.getValue("Total_Minu"))
        p = int(linha.getValue(popf))
        total = groups[group]
        indi = ((t * p) / total) * t
        linha.setValue("tm", indi)
        cs.updateRow(linha)
        linha = cs.next()

    return dissolve(lyr_unidades,
                    output,
                    conjuntos,
                    statistics="tm SUM",
                    api="arcpy")
示例#3
0
文件: popaccess.py 项目: zonakre/gasp
def gdl_mean_time_wByPop(unities,
                         unities_groups,
                         population_field,
                         destinations,
                         output,
                         workspace=None,
                         unities_epsg=4326,
                         destinations_epsg=4326):
    """
    Tempo medio ponderado pela populacao residente a infra-estrutura mais 
    proxima
    
    # TODO: Migrate to Pandas
    """

    import os
    from osgeo import ogr
    from gasp.prop.ff import drv_name
    from gasp.fm import points_to_list
    from gasp.mng.feat import feat_to_pnt
    from gasp.mng.prj import project_geom
    from gasp.mng.fld import add_fields
    from gasp.mng.genze import dissolve
    from gasp.web.glg.direct import get_time_pnt_destinations

    workspace = workspace if workspace else \
        os.path.dirname(output)

    # Unities to centroid
    pnt_unities = feat_to_pnt(
        unities, os.path.join(workspace, 'pnt_' + os.path.basename(unities)))

    # List destinations
    lst_destinies = points_to_list(destinations,
                                   listVal="dict",
                                   inEpsg=destinations_epsg,
                                   outEpsg=4326)

    # Calculate indicator
    polyUnit = ogr.GetDriverByName(drv_name(unities)).Open(unities, 1)

    polyLyr = polyUnit.GetLayer()

    polyLyr = add_fields(polyLyr, {'meantime': ogr.OFTReal})

    pntUnit = ogr.GetDriverByName(drv_name(pnt_unities)).Open(pnt_unities, 0)

    pntLyr = pntUnit.GetLayer()

    polyFeat = polyLyr.GetNextFeature()
    distUnities = {}
    groups = {}
    for pntFeat in pntLyr:
        geom = pntFeat.GetGeometryRef()

        if unities_epsg == 4326:
            originGeom = geom
        else:
            originGeom = project_geom(geom, unities_epsg, 4326, api='ogr')

        _id, duration, distance = get_time_pnt_destinations(
            originGeom, lst_destinies)

        __min = duration['value'] / 60.0
        pop = polyFeat.GetField(population_field)
        group = polyFeat.GetField(unities_groups)

        distUnities[polyFeat.GetFID()] = (__min, __min * pop)

        if group not in groups:
            groups[group] = __min * pop
        else:
            groups[group] += __min * pop

        polyFeat = polyLyr.GetNextFeature()

    del polyLyr
    polyUnit.Destroy()

    polyUnit = ogr.GetDriverByName(drv_name(unities)).Open(unities, 1)

    polyLyr = polyUnit.GetLayer()

    for feat in polyLyr:
        unitId = feat.GetFID()
        groupId = feat.GetField(unities_groups)

        indicator = (distUnities[unitId][1] /
                     groups[groupId]) * distUnities[unitId][0]

        feat.SetField('meantime', indicator)

        polyLyr.SetFeature(feat)

    del polyLyr, pntLyr
    polyUnit.Destroy()
    pntUnit.Destroy()

    dissolve(unities,
             output,
             unities_groups,
             statistics={'meantime': 'SUM'},
             api='ogr')
示例#4
0
文件: popaccess.py 项目: zonakre/gasp
def mean_time_by_influence_area(netDt,
                                rdv,
                                infraestruturas,
                                fld_infraestruturas,
                                unidades,
                                id_unidade,
                                conjuntos,
                                popf,
                                influence_areas_unities,
                                w,
                                output,
                                oneway=True):
    """
    Tempo medio ponderado pela populacao residente a infra-estrutura mais
    proxima (min), por area de influencia
    
    * netDt - Path to Network Dataset
    * infraestruturas - Points of destiny
    * fld_infraestruturas - Field on destiny points to relate with influence area
    * unidades - BGRI; Freg; Concelhos
    * conjuntos - Freg; Concelhos; NUT - field
    * popf - Field with the population of the statistic unity
    * influence_areas_unities - Field on statistic unities layer to relate
    with influence area
    * w = Workspace
    * output = Path to store the final output
    * rdv - Name of feature class with the streets network
    * junctions - Name of feature class with the junctions
    """

    import arcpy
    import os
    from gasp.cpu.arcg.lyr import feat_lyr
    from gasp.cpu.arcg.mng.feat import feat_to_pnt
    from gasp.cpu.arcg.mng.gen import merge
    from gasp.mng.gen import copy_feat
    from gasp.mng.genze import dissolve
    from gasp.cpu.arcg.mng.fld import add_field
    from gasp.cpu.arcg.mng.fld import calc_fld
    from gasp.cpu.arcg.mng.fld import field_statistics
    from gasp.cpu.arcg.mng.fld import type_fields
    from gasp.cpu.arcg.mng.joins import join_table
    from gasp.cpu.arcg.anls.exct import select_by_attr
    from gasp.cpu.arcg.netanlst.closest import closest_facility
    """if arcpy.CheckExtension("Network") == "Available":
        arcpy.CheckOutExtension("Network")
    
    else:
        raise ValueError('Network analyst extension is not avaiable')"""
    def ListGroupArea(lyr, fld_ia, fld_grp):
        d = {}
        cs = arcpy.SearchCursor(lyr)
        for lnh in cs:
            id_group = lnh.getValue(fld_grp)
            id_ia = lnh.getValue(fld_ia)
            if id_group not in d.keys():
                d[id_group] = [id_ia]
            else:
                if id_ia not in d[id_group]:
                    d[id_group].append(id_ia)
        return d

    arcpy.env.overwriteOutput = True
    arcpy.env.workspace = w

    # Procedure #
    copy_unities = copy_feat(unidades,
                             os.path.join(w, os.path.basename(unidades)),
                             gisApi='arcpy')

    # Generate centroids of the statistic unities - unidades
    lyr_unidades = feat_lyr(copy_unities)
    pnt_unidades = feat_to_pnt(lyr_unidades,
                               'pnt_unidades.shp',
                               pnt_position="INSIDE")
    # List all groups of unities (conjuntos)
    group_areas = ListGroupArea(lyr_unidades, influence_areas_unities,
                                conjuntos)
    # Create Layers
    lyr_pnt_unidades = feat_lyr(pnt_unidades)
    lyr_pnt_facilities = feat_lyr(infraestruturas)

    result_list = []

    fld_type_unities = type_fields(lyr_pnt_unidades, field=conjuntos)
    SELECT_UNITIES = '{fld}=\'{c}\'' if str(fld_type_unities) == 'String' \
        else '{fld}={c}'

    fld_type_facilities = type_fields(lyr_pnt_facilities,
                                      field=fld_infraestruturas)
    SELECT_FACILITIES = '{fld}=\'{obj}\'' if str(fld_type_facilities) == 'String' \
        else '{fld}={obj}'
    for group in group_areas.keys():
        # Select centroids of interest
        interest_centroids = select_by_attr(
            lyr_pnt_unidades, SELECT_UNITIES.format(c=str(group),
                                                    fld=conjuntos),
            'pnt_{c}.shp'.format(c=str(group)))
        # Select facilities of interest
        expression = ' OR '.join([
            SELECT_FACILITIES.format(fld=fld_infraestruturas,
                                     obj=str(group_areas[group][i]))
            for i in range(len(group_areas[group]))
        ])

        interest_facilities = select_by_attr(
            lyr_pnt_facilities, expression,
            'facilities_{c}.shp'.format(c=str(group)))
        # Run closest facilitie - Distance between selected CENTROID and selected facilities
        cls_fac_table = os.path.join(w, "clsf_{c}.dbf".format(c=str(group)))
        closest_facility(netDt,
                         rdv,
                         interest_facilities,
                         interest_centroids,
                         cls_fac_table,
                         oneway_restriction=oneway)
        add_field(cls_fac_table, 'j', "SHORT", "6")
        calc_fld(cls_fac_table, 'j', "[IncidentID]-1")
        join_table(interest_centroids, "FID", cls_fac_table, "j", "Total_Minu")
        # Calculate sum of time x population
        add_field(interest_centroids, 'sum', "DOUBLE", "10", "3")
        calc_fld(interest_centroids, 'sum',
                 "[{pop}]*[Total_Minu]".format(pop=popf))
        denominador = field_statistics(interest_centroids, 'sum', 'SUM')
        add_field(interest_centroids, 'tm', "DOUBLE", "10", "3")
        calc_fld(
            interest_centroids, 'tm',
            "([sum]/{sumatorio})*[Total_Minu]".format(
                sumatorio=str(denominador)))
        result_list.append(interest_centroids)

    merge_shp = merge(result_list, "merge_centroids.shp")
    join_table(lyr_unidades, id_unidade, "merge_centroids.shp", id_unidade,
               "tm")

    return dissolve(lyr_unidades,
                    output,
                    conjuntos,
                    statistics="tm SUM",
                    api='arcpy')