示例#1
0
    def run_viewshed_by_cpu(tid,
                            obs,
                            dem,
                            output,
                            vis_basename='vis',
                            maxdst=None,
                            obselevation=None):

        # Create GRASS GIS Session
        loc_name = 'loc_' + str(tid)
        gbase = run_grass(output, location=loc_name, srs=dem)

        # Start GRASS GIS Session
        import grass.script as grass
        import grass.script.setup as gsetup
        gsetup.init(gbase, output, loc_name, 'PERMANENT')

        from gasp.gt.torst import rst_to_grs, grs_to_rst
        from gasp.gt.nop.surf import grs_viewshed

        # Send DEM to GRASS GIS
        grs_dem = rst_to_grs(dem, 'grs_dem', as_cmd=True)

        # Produce Viewshed for each point in obs
        for idx, row in obs.iterrows():
            vrst = grs_viewshed(grs_dem, (row.geometry.x, row.geometry.y),
                                '{}_{}'.format(vis_basename, str(row[obs_id])),
                                max_dist=maxdst,
                                obs_elv=obselevation)

            frst = grs_to_rst(vrst, os.path.join(output, vrst + '.tif'))
示例#2
0
        def clip_and_union(la, lb, cell, work, proc, output):
            ref_rst = shpext_to_rst(cell,
                                    os.path.join(os.path.dirname(cell),
                                                 fprop(cell, 'fn') + '.tif'),
                                    cellsize=10)

            # Start GRASS GIS Session
            loc = "proc_" + str(proc)
            grsbase = run_grass(work, location=loc, srs=ref_rst)
            import grass.script.setup as gsetup
            gsetup.init(grsbase, work, loc, 'PERMANENT')

            # Import GRASS GIS modules
            from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
            from gasp.gt.prop.feat import feat_count

            # Add data to GRASS
            a = shp_to_grs(la, fprop(la, 'fn'), filterByReg=True, asCMD=True)
            b = shp_to_grs(lb, fprop(lb, 'fn'), filterByReg=True, asCMD=True)

            if not feat_count(a, gisApi="grass", work=work, loc=loc):
                return

            if not feat_count(b, gisApi="grass", work=work, loc=loc):
                return

            # Clip
            a_clip = clip(a,
                          None,
                          "{}_clip".format(a),
                          api_gis="grass",
                          clip_by_region=True)
            b_clip = clip(b,
                          None,
                          "{}_clip".format(b),
                          api_gis="grass",
                          clip_by_region=True)

            # Union
            u_shp = union(a_clip,
                          b_clip,
                          "un_{}".format(fprop(cell, 'fn')),
                          api_gis="grass")

            # Export
            o = grs_to_shp(u_shp, output, "area")
示例#3
0
def multi_run(ti, df, ofolder):
    loc_name = 'loc_{}'.format(str(ti))
    grsbase = run_grass(ofolder, location=loc_name, srs=srs_epsg)
    
    import grass.script.setup as gsetup
    gsetup.init(grsbase, ofolder, loc_name, 'PERMANENT')
    
    from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
    from gasp.gt.gop.ovlay import union
    
    for idx, row in df.iterrows():
        # Import data into GRASS GIS
        lyr_a = shp_to_grs(df.shp_a, fprop(df.shp_a, 'fn'), asCMD=True)
        lyr_b = shp_to_grs(df.shp_b, fprop(df.shp_b, 'fn'), asCMD=True)
        
        # Run Union
        shpUnion = union(lyr_a, lyr_b, lyr_a[:10] + '_' + lyr_b[:10], api_gis="grass")
        
        # Export data
        result = grs_to_shp(shpUnion, os.path.join(ofolder, shpUnion + '.shp'), "area")
示例#4
0
文件: joins.py 项目: jasp382/gasp
def join_attr_by_distance(mainTable, joinTable, workGrass, epsg_code, output):
    """
    Find nearest feature and join attributes of the nearest feature
    to the mainTable
    
    Uses GRASS GIS to find near lines.
    """

    import os
    from gasp.gt.wenv.grs import run_grass
    from gasp.gt.fmshp import shp_to_obj
    from gasp.g.to import df_to_geodf
    from gasp.gt.toshp import df_to_shp
    from gasp.pyt.oss import fprop

    # Create GRASS GIS Location
    grassBase = run_grass(workGrass, location='join_loc', srs=epsg_code)

    import grass.script as grass
    import grass.script.setup as gsetup
    gsetup.init(grassBase, workGrass, 'join_loc', 'PERMANENT')

    # Import some GRASS GIS tools
    from gasp.gt.prox import grs_near as near
    from gasp.gt.tbl.attr import geomattr_to_db
    from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp

    # Import data into GRASS GIS
    grsMain = shp_to_grs(mainTable, fprop(mainTable, 'fn', forceLower=True))
    grsJoin = shp_to_grs(joinTable, fprop(joinTable, 'fn', forceLower=True))

    # Get distance from each feature of mainTable to the nearest feature
    # of the join table
    near(grsMain, grsJoin, nearCatCol="tocat", nearDistCol="todistance")

    # Export data from GRASS GIS
    ogrMain = grs_to_shp(grsMain,
                         os.path.join(workGrass, 'join_loc',
                                      grsMain + '_grs.shp'),
                         None,
                         asMultiPart=True)
    ogrJoin = grs_to_shp(grsJoin,
                         os.path.join(workGrass, 'join_loc',
                                      grsJoin + '_grs.shp'),
                         None,
                         asMultiPart=True)

    dfMain = shp_to_obj(ogrMain)
    dfJoin = shp_to_obj(ogrJoin)

    dfResult = dfMain.merge(dfJoin,
                            how='inner',
                            left_on='tocat',
                            right_on='cat')

    dfResult.drop(["geometry_y", "cat_y"], axis=1, inplace=True)
    dfResult.rename(columns={"cat_x": "cat_grass"}, inplace=True)

    dfResult["tocat"] = dfResult["tocat"] - 1
    dfResult["cat_grass"] = dfResult["cat_grass"] - 1

    dfResult = df_to_geodf(dfResult, "geometry_x", epsg_code)

    df_to_shp(dfResult, output)

    return output
示例#5
0
def bnds_to_mosaic(bands, outdata, ref_raster, loc=None):
    """
    Satellite image To mosaic
    
    bands = {
        'bnd_2' : [path_to_file, path_to_file],
        'bnd_3' : [path_to_file, path_to_file],
        'bnd_4' : [path_to_file, path_to_file],
    }
    """
    
    """
    Start GRASS GIS Session
    """
    
    import os
    from gasp.pyt.oss     import fprop
    from gasp.gt.prop.prj import get_rst_epsg
    from gasp.gt.wenv.grs import run_grass

    # Get EPSG from refRaster
    epsg = get_rst_epsg(ref_raster, returnIsProj=None)
    
    LOC = loc if loc else 'gr_loc'
    grass_base = run_grass(
        outdata, grassBIN='grass78',
        location=LOC, srs=epsg
    )
    
    import grass.script as grass
    import grass.script.setup as gsetup
    
    gsetup.init(grass_base, outdata, LOC, 'PERMANENT')
    
    # ************************************************************************ #
    # GRASS MODULES #
    # ************************************************************************ #
    from gasp.gt.torst   import rst_to_grs, grs_to_rst
    from gasp.gt.wenv.grs import rst_to_region
    # ************************************************************************ #
    # SET GRASS GIS LOCATION EXTENT #
    # ************************************************************************ #
    extRst = rst_to_grs(ref_raster, 'extent_raster')
    rst_to_region(extRst)
    # ************************************************************************ #
    # SEND DATA TO GRASS GIS #
    # ************************************************************************ #
    grs_bnds = {}
    
    for bnd in bands:
        l= []
        for b in bands[bnd]:
            bb = rst_to_grs(b, fprop(b, 'fn'))
            l.append(bb)
        
        grs_bnds[bnd] = l
    # ************************************************************************ #
    # PATCH bands and export #
    # ************************************************************************ #
    for bnd in grs_bnds:
        mosaic_band = rseries(grs_bnds[bnd], bnd, 'maximum')
        
        grs_bnds[bnd] = grs_to_rst(mosaic_band, os.path.join(
            outdata, mosaic_band + '.tif'
        ), as_cmd=True)
    
    return grs_bnds
示例#6
0
def raster_based(osmdata,
                 nomenclature,
                 refRaster,
                 lulcRst,
                 overwrite=None,
                 dataStore=None,
                 roadsAPI='POSTGIS'):
    """
    Convert OSM Data into Land Use/Land Cover Information
    
    An raster based approach.
    
    TODO: Add detailed description
    """

    # ************************************************************************ #
    # Python Modules from Reference Packages #
    # ************************************************************************ #
    import datetime
    import os
    import pandas
    import copy
    # ************************************************************************ #
    # Gasp dependencies #
    # ************************************************************************ #
    from gasp.pyt.oss import mkdir, fprop
    from gasp.gt.prop.ff import check_isRaster
    from gasp.gt.prop.prj import get_rst_epsg
    from gasp.gt.wenv.grs import run_grass
    if roadsAPI == 'POSTGIS':
        from gasp.sql.db import create_db
        from gasp.gql.to.osm import osm_to_psql
        from gasp.sds.osm2lulc.mod2 import roads_sqdb
        from gasp.sql.fm import dump_db
        from gasp.sql.db import drop_db
    else:
        from gasp.gt.toshp.osm import osm_to_sqdb
        from gasp.sds.osm2lulc.mod2 import grs_rst_roads
    from gasp.sds.osm2lulc.utils import osm_project, add_lulc_to_osmfeat, osmlulc_rsttbl
    from gasp.sds.osm2lulc.utils import get_ref_raster
    from gasp.sds.osm2lulc.mod1 import grs_rst
    from gasp.sds.osm2lulc.m3_4 import rst_area
    from gasp.sds.osm2lulc.mod5 import basic_buffer
    from gasp.sds.osm2lulc.mod6 import rst_pnt_to_build
    # ************************************************************************ #
    # Global Settings #
    # ************************************************************************ #
    # Check if input parameters exists!
    if not os.path.exists(os.path.dirname(lulcRst)):
        raise ValueError('{} does not exist!'.format(os.path.dirname(lulcRst)))

    if not os.path.exists(osmdata):
        raise ValueError(
            'File with OSM DATA ({}) does not exist!'.format(osmdata))

    if not os.path.exists(refRaster):
        raise ValueError(
            'File with reference area ({}) does not exist!'.format(refRaster))

    # Check if Nomenclature is valid
    nomenclature = "URBAN_ATLAS" if nomenclature != "URBAN_ATLAS" and \
        nomenclature != "CORINE_LAND_COVER" and \
        nomenclature == "GLOBE_LAND_30" else nomenclature

    time_a = datetime.datetime.now().replace(microsecond=0)

    workspace = os.path.join(os.path.dirname(lulcRst),
                             'osmtolulc') if not dataStore else dataStore

    # Check if workspace exists
    if os.path.exists(workspace):
        if overwrite:
            mkdir(workspace)
        else:
            raise ValueError('Path {} already exists'.format(workspace))
    else:
        mkdir(workspace)

    # Get Ref Raster
    refRaster, epsg = get_ref_raster(refRaster, workspace, cellsize=2)

    from gasp.sds.osm2lulc import PRIORITIES, osmTableData, LEGEND

    __priorites = PRIORITIES[nomenclature]
    __legend = LEGEND[nomenclature]
    time_b = datetime.datetime.now().replace(microsecond=0)

    # ************************************************************************ #
    # Convert OSM file to SQLITE DB or to POSTGIS DB #
    # ************************************************************************ #
    if roadsAPI == 'POSTGIS':
        osm_db = create_db(fprop(osmdata, 'fn', forceLower=True),
                           overwrite=True)
        osm_db = osm_to_psql(osmdata, osm_db)
    else:
        osm_db = osm_to_sqdb(osmdata, os.path.join(workspace, 'osm.sqlite'))
    time_c = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Add Lulc Classes to OSM_FEATURES by rule #
    # ************************************************************************ #
    add_lulc_to_osmfeat(osm_db, osmTableData, nomenclature, api=roadsAPI)
    time_d = datetime.datetime.now().replace(microsecond=0)

    # ************************************************************************ #
    # Transform SRS of OSM Data #
    # ************************************************************************ #
    osmTableData = osm_project(
        osm_db,
        epsg,
        api=roadsAPI,
        isGlobeLand=None if nomenclature != 'GLOBE_LAND_30' else True)
    time_e = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Start a GRASS GIS Session #
    # ************************************************************************ #
    grass_base = run_grass(workspace,
                           grassBIN='grass78',
                           location='grloc',
                           srs=epsg)
    import grass.script as grass
    import grass.script.setup as gsetup
    gsetup.init(grass_base, workspace, 'grloc', 'PERMANENT')

    # ************************************************************************ #
    # IMPORT SOME GASP MODULES FOR GRASS GIS #
    # ************************************************************************ #
    from gasp.gt.torst import rst_to_grs, grs_to_rst
    from gasp.gt.nop.mos import rsts_to_mosaic
    from gasp.gt.wenv.grs import rst_to_region
    # ************************************************************************ #
    # SET GRASS GIS LOCATION EXTENT #
    # ************************************************************************ #
    extRst = rst_to_grs(refRaster, 'extent_raster')
    rst_to_region(extRst)
    time_f = datetime.datetime.now().replace(microsecond=0)

    # ************************************************************************ #
    # MapResults #
    mergeOut = {}
    # ************************************************************************ #
    # ************************************************************************ #
    # 1 - Selection Rule #
    # ************************************************************************ #
    """
    selOut = {
        cls_code : rst_name, ...
    }
    """
    selOut, timeCheck1 = grs_rst(osm_db,
                                 osmTableData['polygons'],
                                 api=roadsAPI)

    for cls in selOut:
        mergeOut[cls] = [selOut[cls]]

    time_g = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # 2 - Get Information About Roads Location #
    # ************************************************************************ #
    """
    roads = {
        cls_code : rst_name, ...
    }
    """

    if roadsAPI != 'POSTGIS':
        roads, timeCheck2 = grs_rst_roads(
            osm_db, osmTableData['lines'], osmTableData['polygons'], workspace,
            1221 if nomenclature != "GLOBE_LAND_30" else 801)
    else:
        roadCls = 1221 if nomenclature != "GLOBE_LAND_30" else 801

        roads, timeCheck2 = roads_sqdb(osm_db,
                                       osmTableData['lines'],
                                       osmTableData['polygons'],
                                       apidb='POSTGIS',
                                       asRst=roadCls)

        roads = {roadCls: roads}

    for cls in roads:
        if cls not in mergeOut:
            mergeOut[cls] = [roads[cls]]
        else:
            mergeOut[cls].append(roads[cls])

    time_h = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # 3 - Area Upper than #
    # ************************************************************************ #
    """
    auOut = {
        cls_code : rst_name, ...
    }
    """

    if nomenclature != 'GLOBE_LAND_30':
        auOut, timeCheck3 = rst_area(osm_db,
                                     osmTableData['polygons'],
                                     UPPER=True,
                                     api=roadsAPI)

        for cls in auOut:
            if cls not in mergeOut:
                mergeOut[cls] = [auOut[cls]]
            else:
                mergeOut[cls].append(auOut[cls])

        time_l = datetime.datetime.now().replace(microsecond=0)
    else:
        timeCheck3 = None
        time_l = None
    # ************************************************************************ #
    # 4 - Area Lower than #
    # ************************************************************************ #
    """
    alOut = {
        cls_code : rst_name, ...
    }
    """
    if nomenclature != 'GLOBE_LAND_30':
        alOut, timeCheck4 = rst_area(osm_db,
                                     osmTableData['polygons'],
                                     UPPER=None,
                                     api=roadsAPI)
        for cls in alOut:
            if cls not in mergeOut:
                mergeOut[cls] = [alOut[cls]]
            else:
                mergeOut[cls].append(alOut[cls])

        time_j = datetime.datetime.now().replace(microsecond=0)
    else:
        timeCheck4 = None
        time_j = None
    # ************************************************************************ #
    # 5 - Get data from lines table (railway | waterway) #
    # ************************************************************************ #
    """
    bfOut = {
        cls_code : rst_name, ...
    }
    """

    bfOut, timeCheck5 = basic_buffer(osm_db,
                                     osmTableData['lines'],
                                     workspace,
                                     apidb=roadsAPI)
    for cls in bfOut:
        if cls not in mergeOut:
            mergeOut[cls] = [bfOut[cls]]
        else:
            mergeOut[cls].append(bfOut[cls])

    time_m = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # 7 - Assign untagged Buildings to tags #
    # ************************************************************************ #
    if nomenclature != "GLOBE_LAND_30":
        buildsOut, timeCheck7 = rst_pnt_to_build(osm_db,
                                                 osmTableData['points'],
                                                 osmTableData['polygons'],
                                                 api_db=roadsAPI)

        for cls in buildsOut:
            if cls not in mergeOut:
                mergeOut[cls] = buildsOut[cls]
            else:
                mergeOut[cls] += buildsOut[cls]

        time_n = datetime.datetime.now().replace(microsecond=0)

    else:
        timeCheck7 = None
        time_n = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Produce LULC Map  #
    # ************************************************************************ #
    """
    Merge all results for one cls into one raster
    mergeOut = {
        cls_code : [rst_name, rst_name, ...], ...
    }
    into
    mergeOut = {
        cls_code : patched_raster, ...
    }
    """

    for cls in mergeOut:
        if len(mergeOut[cls]) == 1:
            mergeOut[cls] = mergeOut[cls][0]

        else:
            mergeOut[cls] = rsts_to_mosaic(mergeOut[cls],
                                           'mosaic_{}'.format(str(cls)),
                                           api="grass")

    time_o = datetime.datetime.now().replace(microsecond=0)
    """
    Merge all Class Raster using a priority rule
    """

    __priorities = PRIORITIES[nomenclature]
    lst_rst = []
    for cls in __priorities:
        if cls not in mergeOut:
            continue
        else:
            lst_rst.append(mergeOut[cls])

    outGrs = rsts_to_mosaic(lst_rst,
                            os.path.splitext(os.path.basename(lulcRst))[0],
                            api="grass")
    time_p = datetime.datetime.now().replace(microsecond=0)

    # Ceck if lulc Rst has an valid format
    outIsRst = check_isRaster(lulcRst)
    if not outIsRst:
        from gasp.pyt.oss import fprop
        lulcRst = os.path.join(os.path.dirname(lulcRst),
                               fprop(lulcRst, 'fn') + '.tif')

    grs_to_rst(outGrs, lulcRst, as_cmd=True)
    osmlulc_rsttbl(
        nomenclature,
        os.path.join(os.path.dirname(lulcRst),
                     os.path.basename(lulcRst) + '.vat.dbf'))

    time_q = datetime.datetime.now().replace(microsecond=0)

    # Dump Database if PostGIS was used
    # Drop Database if PostGIS was used
    if roadsAPI == 'POSTGIS':
        dump_db(osm_db, os.path.join(workspace, osm_db + '.sql'), api='psql')
        drop_db(osm_db)

    return lulcRst, {
        0: ('set_settings', time_b - time_a),
        1: ('osm_to_sqdb', time_c - time_b),
        2: ('cls_in_sqdb', time_d - time_c),
        3: ('proj_data', time_e - time_d),
        4: ('set_grass', time_f - time_e),
        5: ('rule_1', time_g - time_f, timeCheck1),
        6: ('rule_2', time_h - time_g, timeCheck2),
        7:
        None if not timeCheck3 else ('rule_3', time_l - time_h, timeCheck3),
        8:
        None if not timeCheck4 else ('rule_4', time_j - time_l, timeCheck4),
        9: ('rule_5', time_m - time_j if timeCheck4 else time_m - time_h,
            timeCheck5),
        10:
        None if not timeCheck7 else ('rule_7', time_n - time_m, timeCheck7),
        11: ('merge_rst', time_o - time_n),
        12: ('priority_rule', time_p - time_o),
        13: ('export_rst', time_q - time_p)
    }
示例#7
0
def vector_based(osmdata,
                 nomenclature,
                 refRaster,
                 lulcShp,
                 overwrite=None,
                 dataStore=None,
                 RoadsAPI='POSTGIS'):
    """
    Convert OSM Data into Land Use/Land Cover Information
    
    An vector based approach.
    
    TODO: Add a detailed description.
    
    RoadsAPI Options:
    * GRASS
    * SQLITE
    * POSTGIS
    """

    # ************************************************************************ #
    # Python Modules from Reference Packages #
    # ************************************************************************ #
    import datetime
    import os
    import copy
    # ************************************************************************ #
    # GASP dependencies #
    # ************************************************************************ #
    from gasp.pyt.oss import fprop, mkdir
    from gasp.gt.wenv.grs import run_grass
    if RoadsAPI == 'POSTGIS':
        from gasp.sql.db import create_db
        from gasp.gql.to.osm import osm_to_psql
        from gasp.sql.db import drop_db
        from gasp.sql.fm import dump_db
    else:
        from gasp.gt.toshp.osm import osm_to_sqdb
    from gasp.sds.osm2lulc.utils import osm_project, add_lulc_to_osmfeat, get_ref_raster
    from gasp.gt.toshp.mtos import shps_to_shp
    from gasp.sds.osm2lulc.mod1 import grs_vector
    if RoadsAPI == 'SQLITE' or RoadsAPI == 'POSTGIS':
        from gasp.sds.osm2lulc.mod2 import roads_sqdb
    else:
        from gasp.sds.osm2lulc.mod2 import grs_vec_roads
    from gasp.sds.osm2lulc.m3_4 import grs_vect_selbyarea
    from gasp.sds.osm2lulc.mod5 import grs_vect_bbuffer
    from gasp.sds.osm2lulc.mod6 import vector_assign_pntags_to_build
    from gasp.gt.toshp.mtos import same_attr_to_shp
    from gasp.gt.prj import def_prj
    # ************************************************************************ #
    # Global Settings #
    # ************************************************************************ #
    # Check if input parameters exists!
    if not os.path.exists(os.path.dirname(lulcShp)):
        raise ValueError('{} does not exist!'.format(os.path.dirname(lulcShp)))

    if not os.path.exists(osmdata):
        raise ValueError(
            'File with OSM DATA ({}) does not exist!'.format(osmdata))

    if not os.path.exists(refRaster):
        raise ValueError(
            'File with reference area ({}) does not exist!'.format(refRaster))

    # Check if Nomenclature is valid
    nomenclature = "URBAN_ATLAS" if nomenclature != "URBAN_ATLAS" and \
        nomenclature != "CORINE_LAND_COVER" and \
        nomenclature == "GLOBE_LAND_30" else nomenclature

    time_a = datetime.datetime.now().replace(microsecond=0)

    # Create workspace for temporary files
    workspace = os.path.join(os.path.dirname(lulcShp),
                             'osmtolulc') if not dataStore else dataStore

    # Check if workspace exists
    if os.path.exists(workspace):
        if overwrite:
            mkdir(workspace)
        else:
            raise ValueError('Path {} already exists'.format(workspace))
    else:
        mkdir(workspace)

    # Get Reference Raster
    refRaster, epsg = get_ref_raster(refRaster, workspace, cellsize=10)

    from gasp.sds.osm2lulc import osmTableData, PRIORITIES, LEGEND

    __priorities = PRIORITIES[nomenclature]
    __legend = LEGEND[nomenclature]

    time_b = datetime.datetime.now().replace(microsecond=0)

    if RoadsAPI != 'POSTGIS':
        # ******************************************************************** #
        # Convert OSM file to SQLITE DB #
        # ******************************************************************** #
        osm_db = osm_to_sqdb(osmdata, os.path.join(workspace, 'osm.sqlite'))
    else:
        # Convert OSM file to POSTGRESQL DB #
        osm_db = create_db(fprop(osmdata, 'fn', forceLower=True),
                           overwrite=True)
        osm_db = osm_to_psql(osmdata, osm_db)
    time_c = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Add Lulc Classes to OSM_FEATURES by rule #
    # ************************************************************************ #
    add_lulc_to_osmfeat(osm_db,
                        osmTableData,
                        nomenclature,
                        api='SQLITE' if RoadsAPI != 'POSTGIS' else RoadsAPI)
    time_d = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Transform SRS of OSM Data #
    # ************************************************************************ #
    osmTableData = osm_project(
        osm_db,
        epsg,
        api='SQLITE' if RoadsAPI != 'POSTGIS' else RoadsAPI,
        isGlobeLand=None if nomenclature != 'GLOBE_LAND_30' else True)
    time_e = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # Start a GRASS GIS Session #
    # ************************************************************************ #
    grass_base = run_grass(workspace,
                           grassBIN='grass78',
                           location='grloc',
                           srs=epsg)
    #import grass.script as grass
    import grass.script.setup as gsetup
    gsetup.init(grass_base, workspace, 'grloc', 'PERMANENT')

    # ************************************************************************ #
    # IMPORT SOME GASP MODULES FOR GRASS GIS #
    # ************************************************************************ #
    from gasp.gt.gop.ovlay import erase
    from gasp.gt.wenv.grs import rst_to_region
    from gasp.gt.gop.genze import dissolve
    from gasp.gt.tbl.grs import add_and_update, reset_table, update_table
    from gasp.gt.tbl.fld import add_fields
    from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
    from gasp.gt.torst import rst_to_grs
    # ************************************************************************ #
    # SET GRASS GIS LOCATION EXTENT #
    # ************************************************************************ #
    extRst = rst_to_grs(refRaster, 'extent_raster')
    rst_to_region(extRst)
    time_f = datetime.datetime.now().replace(microsecond=0)

    # ************************************************************************ #
    # MapResults #
    # ************************************************************************ #
    osmShps = []
    # ************************************************************************ #
    # 1 - Selection Rule #
    # ************************************************************************ #
    ruleOneShp, timeCheck1 = grs_vector(osm_db,
                                        osmTableData['polygons'],
                                        apidb=RoadsAPI)
    osmShps.append(ruleOneShp)

    time_g = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # 2 - Get Information About Roads Location #
    # ************************************************************************ #
    ruleRowShp, timeCheck2 = roads_sqdb(
        osm_db,
        osmTableData['lines'],
        osmTableData['polygons'],
        apidb=RoadsAPI
    ) if RoadsAPI == 'SQLITE' or RoadsAPI == 'POSTGIS' else grs_vec_roads(
        osm_db, osmTableData['lines'], osmTableData['polygons'])

    osmShps.append(ruleRowShp)
    time_h = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # 3 - Area Upper than #
    # ************************************************************************ #
    if nomenclature != "GLOBE_LAND_30":
        ruleThreeShp, timeCheck3 = grs_vect_selbyarea(osm_db,
                                                      osmTableData['polygons'],
                                                      UPPER=True,
                                                      apidb=RoadsAPI)

        osmShps.append(ruleThreeShp)
        time_l = datetime.datetime.now().replace(microsecond=0)
    else:
        timeCheck3 = None
        time_l = None
    # ************************************************************************ #
    # 4 - Area Lower than #
    # ************************************************************************ #
    if nomenclature != "GLOBE_LAND_30":
        ruleFourShp, timeCheck4 = grs_vect_selbyarea(osm_db,
                                                     osmTableData['polygons'],
                                                     UPPER=False,
                                                     apidb=RoadsAPI)

        osmShps.append(ruleFourShp)
        time_j = datetime.datetime.now().replace(microsecond=0)
    else:
        timeCheck4 = None
        time_j = None
    # ************************************************************************ #
    # 5 - Get data from lines table (railway | waterway) #
    # ************************************************************************ #
    ruleFiveShp, timeCheck5 = grs_vect_bbuffer(osm_db,
                                               osmTableData["lines"],
                                               api_db=RoadsAPI)

    osmShps.append(ruleFiveShp)
    time_m = datetime.datetime.now().replace(microsecond=0)
    # ************************************************************************ #
    # 7 - Assign untagged Buildings to tags #
    # ************************************************************************ #
    if nomenclature != "GLOBE_LAND_30":
        ruleSeven11, ruleSeven12, timeCheck7 = vector_assign_pntags_to_build(
            osm_db,
            osmTableData['points'],
            osmTableData['polygons'],
            apidb=RoadsAPI)

        if ruleSeven11:
            osmShps.append(ruleSeven11)

        if ruleSeven12:
            osmShps.append(ruleSeven12)

        time_n = datetime.datetime.now().replace(microsecond=0)

    else:
        timeCheck7 = None
        time_n = datetime.datetime.now().replace(microsecond=0)

    # ************************************************************************ #
    # Produce LULC Map  #
    # ************************************************************************ #
    """
    Get Shps with all geometries related with one class - One Shape for Classe
    """

    _osmShps = []
    for i in range(len(osmShps)):
        if not osmShps[i]: continue

        _osmShps.append(
            grs_to_shp(osmShps[i],
                       os.path.join(workspace, osmShps[i] + '.shp'),
                       'auto',
                       lyrN=1,
                       asCMD=True,
                       asMultiPart=None))

    for shp in _osmShps:
        def_prj(os.path.splitext(shp)[0] + '.prj', epsg=epsg, api='epsgio')

    _osmShps = same_attr_to_shp(_osmShps,
                                "cat",
                                workspace,
                                "osm_",
                                resultDict=True)
    del osmShps

    time_o = datetime.datetime.now().replace(microsecond=0)
    """
    Merge all Classes into one feature class using a priority rule
    """

    osmShps = {}
    for cls in _osmShps:
        if cls == '1':
            osmShps[1221] = shp_to_grs(_osmShps[cls], "osm_1221", asCMD=True)

        else:
            osmShps[int(cls)] = shp_to_grs(_osmShps[cls],
                                           "osm_" + cls,
                                           asCMD=True)

    # Erase overlapping areas by priority
    osmNameRef = copy.deepcopy(osmShps)

    for e in range(len(__priorities)):
        if e + 1 == len(__priorities): break

        if __priorities[e] not in osmShps:
            continue
        else:
            for i in range(e + 1, len(__priorities)):
                if __priorities[i] not in osmShps:
                    continue
                else:
                    osmShps[__priorities[i]] = erase(
                        osmShps[__priorities[i]],
                        osmShps[__priorities[e]],
                        "{}_{}".format(osmNameRef[__priorities[i]], e),
                        notTbl=True,
                        api='pygrass')

    time_p = datetime.datetime.now().replace(microsecond=0)

    # Export all classes
    lst_merge = []
    a = None
    for i in range(len(__priorities)):
        if __priorities[i] not in osmShps:
            continue

        if not a:
            reset_table(osmShps[__priorities[i]], {
                'cls': 'varchar(5)',
                'leg': 'varchar(75)'
            }, {
                'cls': str(__priorities[i]),
                'leg': str(__legend[__priorities[i]])
            })

            a = 1

        else:
            add_and_update(osmShps[__priorities[i]], {'cls': 'varchar(5)'},
                           {'cls': str(__priorities[i])})

        ds = dissolve(osmShps[__priorities[i]],
                      'dl_{}'.format(str(__priorities[i])),
                      'cls',
                      api="grass")

        add_fields(ds, {'leg': 'varchar(75)'}, api="grass")
        update_table(ds, 'leg', str(__legend[__priorities[i]]), 'leg is null')

        lst_merge.append(
            grs_to_shp(ds,
                       os.path.join(workspace, "lulc_{}.shp".format(
                           str(__priorities[i]))),
                       'auto',
                       lyrN=1,
                       asCMD=True,
                       asMultiPart=None))

    time_q = datetime.datetime.now().replace(microsecond=0)

    if fprop(lulcShp, 'ff') != '.shp':
        lulcShp = os.path.join(os.path.dirname(lulcShp),
                               fprop(lulcShp, 'fn') + '.shp')

    shps_to_shp(lst_merge, lulcShp, api='pandas')

    # Check if prj of lulcShp exists and create it if necessary
    prj_ff = os.path.splitext(lulcShp)[0] + '.prj'
    if not os.path.exists(prj_ff):
        def_prj(prj_ff, epsg=epsg, api='epsgio')

    time_r = datetime.datetime.now().replace(microsecond=0)

    # Dump Database if PostGIS was used
    # Drop Database if PostGIS was used
    if RoadsAPI == 'POSTGIS':
        dump_db(osm_db, os.path.join(workspace, osm_db + '.sql'), api='psql')
        drop_db(osm_db)

    return lulcShp, {
        0: ('set_settings', time_b - time_a),
        1: ('osm_to_sqdb', time_c - time_b),
        2: ('cls_in_sqdb', time_d - time_c),
        3: ('proj_data', time_e - time_d),
        4: ('set_grass', time_f - time_e),
        5: ('rule_1', time_g - time_f, timeCheck1),
        6: ('rule_2', time_h - time_g, timeCheck2),
        7:
        None if not timeCheck3 else ('rule_3', time_l - time_h, timeCheck3),
        8:
        None if not timeCheck4 else ('rule_4', time_j - time_l, timeCheck4),
        9: ('rule_5', time_m - time_j if timeCheck4 else time_m - time_h,
            timeCheck5),
        10:
        None if not timeCheck7 else ('rule_7', time_n - time_m, timeCheck7),
        11: ('disj_cls', time_o - time_n),
        12: ('priority_rule', time_p - time_o),
        13: ('export_cls', time_q - time_p),
        14: ('merge_cls', time_r - time_q)
    }
示例#8
0
def snap_points_to_near_line(lineShp,
                             pointShp,
                             epsg,
                             workGrass,
                             outPoints,
                             location='overlap_pnts',
                             api='grass',
                             movesShp=None):
    """
    Move points to overlap near line
    
    API's Available:
    * grass;
    * saga.
    """

    if api == 'grass':
        """
        Uses GRASS GIS to find near lines.
        """

        import os
        import numpy
        from geopandas import GeoDataFrame
        from gasp.pyt.oss import fprop
        from gasp.gt.wenv.grs import run_grass
        from gasp.gt.fmshp import shp_to_obj
        from gasp.gt.toshp import df_to_shp

        # Create GRASS GIS Location
        grassBase = run_grass(workGrass, location=location, srs=epsg)

        import grass.script as grass
        import grass.script.setup as gsetup
        gsetup.init(grassBase, workGrass, location, 'PERMANENT')

        # Import some GRASS GIS tools
        from gasp.gt.prox import grs_near as near
        from gasp.gt.tbl.attr import geomattr_to_db
        from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp

        # Import data into GRASS GIS
        grsLines = shp_to_grs(lineShp, fprop(lineShp, 'fn', forceLower=True))

        grsPoint = shp_to_grs(pointShp, fprop(pointShp, 'fn', forceLower=True))

        # Get distance from points to near line
        near(grsPoint, grsLines, nearCatCol="tocat", nearDistCol="todistance")

        # Get coord of start/end points of polylines
        geomattr_to_db(grsLines, ['sta_pnt_x', 'sta_pnt_y'], 'start', 'line')
        geomattr_to_db(grsLines, ['end_pnt_x', 'end_pnt_y'], 'end', 'line')

        # Export data from GRASS GIS
        ogrPoint = grs_to_shp(
            grsPoint,
            os.path.join(workGrass,
                         grsPoint + '.shp',
                         'point',
                         asMultiPart=True))

        ogrLine = grs_to_shp(
            grsLines,
            os.path.join(workGrass,
                         grsLines + '.shp',
                         'point',
                         asMultiPart=True))

        # Points to GeoDataFrame
        pntDf = shp_to_obj(ogrPoint)
        # Lines to GeoDataFrame
        lnhDf = shp_to_obj(ogrLine)

        # Erase unecessary fields
        pntDf.drop(["todistance"], axis=1, inplace=True)
        lnhDf.drop([
            c for c in lnhDf.columns.values
            if c != 'geometry' and c != 'cat' and c != 'sta_pnt_x'
            and c != 'sta_pnt_y' and c != 'end_pnt_x' and c != 'end_pnt_y'
        ],
                   axis=1,
                   inplace=True)

        # Join Geometries - Table with Point Geometry and Geometry of the
        # nearest line
        resultDf = pntDf.merge(lnhDf,
                               how='inner',
                               left_on='tocat',
                               right_on='cat')

        # Move points
        resultDf['geometry'] = [
            geoms[0].interpolate(geoms[0].project(geoms[1]))
            for geoms in zip(resultDf.geometry_y, resultDf.geometry_x)
        ]

        resultDf.drop(["geometry_x", "geometry_y", "cat_x", "cat_y"],
                      axis=1,
                      inplace=True)

        resultDf = GeoDataFrame(resultDf,
                                crs={"init": 'epsg:{}'.format(epsg)},
                                geometry="geometry")

        # Check if points are equal to any start/end points
        resultDf["x"] = resultDf.geometry.x
        resultDf["y"] = resultDf.geometry.y

        resultDf["check"] = numpy.where(
            (resultDf["x"] == resultDf["sta_pnt_x"]) &
            (resultDf["y"] == resultDf["sta_pnt_y"]), 1, 0)

        resultDf["check"] = numpy.where(
            (resultDf["x"] == resultDf["end_pnt_x"]) &
            (resultDf["y"] == resultDf["end_pnt_y"]), 1, 0)

        # To file
        df_to_shp(resultDf, outPoints)

    elif api == 'saga':
        """
        Snap Points to Lines using SAGA GIS
        """

        from gasp import exec_cmd

        cmd = ("saga_cmd shapes_points 19 -INPUT {pnt} -SNAP {lnh} "
               "-OUTPUT {out}{mv}").format(
                   pnt=pointShp,
                   lnh=lineShp,
                   out=outPoints,
                   mv="" if not movesShp else " -MOVES {}".format(movesShp))

        outcmd = exec_cmd(cmd)

    else:
        raise ValueError("{} is not available!".format(api))

    return outPoints
示例#9
0
def lnh_to_polygons(inShp, outShp, api='saga', db=None):
    """
    Line to Polygons
    
    API's Available:
    * saga;
    * grass;
    * pygrass;
    * psql;
    """

    if api == 'saga':
        """
        http://www.saga-gis.org/saga_tool_doc/7.0.0/shapes_polygons_3.html
        
        Converts lines to polygons. Line arcs are closed to polygons simply
        by connecting the last point with the first. Optionally parts of
        polylines can be merged into one polygon optionally. 
        """

        from gasp import exec_cmd

        rcmd = exec_cmd(("saga_cmd shapes_polygons 3 -POLYGONS {} "
                         "LINES {} -SINGLE 1 -MERGE 1").format(outShp, inShp))

    elif api == 'grass' or api == 'pygrass':
        # Do it using GRASS GIS

        import os
        from gasp.gt.wenv.grs import run_grass
        from gasp.pyt.oss import fprop

        # Create GRASS GIS Session
        wk = os.path.dirname(outShp)
        lo = fprop(outShp, 'fn', forceLower=True)

        gs = run_grass(wk, lo, srs=inShp)

        import grass.script as grass
        import grass.script.setup as gsetup
        gsetup.init(gs, wk, lo, 'PERMANENT')

        # Import Packages
        from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
        from gasp.gt.toshp.cgeo import line_to_polyline
        from gasp.gt.toshp.cgeo import geomtype_to_geomtype
        from gasp.gt.toshp.cgeo import boundary_to_areas

        # Send data to GRASS GIS
        lnh_shp = shp_to_grs(inShp,
                             fprop(inShp, 'fn', forceLower=True),
                             asCMD=True if api == 'grass' else None)

        # Build Polylines
        pol_lnh = line_to_polyline(lnh_shp,
                                   "polylines",
                                   asCmd=True if api == 'grass' else None)

        # Polyline to boundary
        bound = geomtype_to_geomtype(pol_lnh,
                                     'bound_shp',
                                     'line',
                                     'boundary',
                                     cmd=True if api == 'grass' else None)

        # Boundary to Area
        areas_shp = boundary_to_areas(bound,
                                      lo,
                                      useCMD=True if api == 'grass' else None)

        # Export data
        outShp = grs_to_shp(areas_shp,
                            outShp,
                            'area',
                            asCMD=True if api == 'grass' else None)

    elif api == 'psql':
        """ Do it using PostGIS """
        from gasp.pyt.oss import fprop
        from gasp.sql.db import create_db
        from gasp.gql.to import shp_to_psql
        from gasp.gt.toshp.db import dbtbl_to_shp
        from gasp.gql.cnv import lnh_to_polg
        from gasp.gt.prop.prj import get_epsg_shp

        # Create DB
        if not db:
            db = create_db(fprop(inShp, 'fn', forceLower=True), api='psql')

        else:
            from gasp.sql.i import db_exists
            isDB = db_exists(db)

            if not isDB:
                create_db(db, api='psql')

        # Send data to DB
        in_tbl = shp_to_psql(db, inShp, api="shp2pgsql")

        # Get Result
        result = lnh_to_polg(db, in_tbl, fprop(outShp, 'fn', forceLower=True))

        # Export Result
        outshp = dbtbl_to_shp(db,
                              result,
                              "geom",
                              outShp,
                              api='psql',
                              epsg=get_epsg_shp(inShp))

    else:
        raise ValueError("API {} is not available".format(api))

    return outShp
示例#10
0
def check_shape_diff(SHAPES_TO_COMPARE, OUT_FOLDER, REPORT, DB,
                     GRASS_REGION_TEMPLATE):
    """
    Script to check differences between pairs of Feature Classes
    
    Suponha que temos diversas Feature Classes (FC) e que cada uma delas
    possui um determinado atributo; imagine tambem que,
    considerando todos os pares possiveis entre estas FC,
    se pretende comparar as diferencas na distribuicao dos valores
    desse atributo para cada par.
    
    * Dependencias:
    - GRASS;
    - PostgreSQL;
    - PostGIS.
    """

    import datetime
    import os
    import pandas
    from gasp.sql.fm import q_to_obj
    from gasp.to import db_to_tbl
    from gasp.sql.to import df_to_db
    from gasp.gt.toshp.cff import shp_to_shp
    from gasp.gt.toshp.db import dbtbl_to_shp
    from gasp.gt.toshp.rst import rst_to_polyg
    from gasp.gql.to import shp_to_psql
    from gasp.gql.tomtx import tbl_to_area_mtx
    from gasp.gt.prop.ff import check_isRaster
    from gasp.pyt.oss import fprop
    from gasp.sql.db import create_db
    from gasp.sql.tbl import tbls_to_tbl
    from gasp.sql.to import q_to_ntbl
    from gasp.gql.cln import fix_geom
    from gasp.to import db_to_tbl

    # Check if folder exists, if not create it
    if not os.path.exists(OUT_FOLDER):
        from gasp.pyt.oss import mkdir
        mkdir(OUT_FOLDER, overwrite=None)
    else:
        raise ValueError('{} already exists!'.format(OUT_FOLDER))

    from gasp.gt.wenv.grs import run_grass

    gbase = run_grass(OUT_FOLDER,
                      grassBIN='grass78',
                      location='shpdif',
                      srs=GRASS_REGION_TEMPLATE)

    import grass.script as grass
    import grass.script.setup as gsetup

    gsetup.init(gbase, OUT_FOLDER, 'shpdif', 'PERMANENT')

    from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
    from gasp.gt.torst import rst_to_grs
    from gasp.gt.tbl.fld import rn_cols

    # Convert to SHAPE if file is Raster
    i = 0
    _SHP_TO_COMPARE = {}
    for s in SHAPES_TO_COMPARE:
        isRaster = check_isRaster(s)

        if isRaster:
            # To GRASS
            rstName = fprop(s, 'fn')
            inRst = rst_to_grs(s, "rst_" + rstName, as_cmd=True)
            # To Vector
            d = rst_to_polyg(inRst,
                             rstName,
                             rstColumn="lulc_{}".format(i),
                             gisApi="grass")

            # Export Shapefile
            shp = grs_to_shp(d, os.path.join(OUT_FOLDER, d + '.shp'), "area")

            _SHP_TO_COMPARE[shp] = "lulc_{}".format(i)

        else:
            # To GRASS
            grsV = shp_to_grs(s, fprop(s, 'fn'), asCMD=True)

            # Change name of column with comparing value
            ncol = "lulc_{}".format(str(i))
            rn_cols(grsV, {SHAPES_TO_COMPARE[s]: "lulc_{}".format(str(i))},
                    api="grass")

            # Export
            shp = grs_to_shp(grsV, os.path.join(OUT_FOLDER, grsV + '_rn.shp'),
                             "area")

            _SHP_TO_COMPARE[shp] = "lulc_{}".format(str(i))

        i += 1

    SHAPES_TO_COMPARE = _SHP_TO_COMPARE
    __SHAPES_TO_COMPARE = SHAPES_TO_COMPARE

    # Create database
    create_db(DB, api='psql')
    """ Union SHAPEs """

    UNION_SHAPE = {}
    FIX_GEOM = {}

    SHPS = list(__SHAPES_TO_COMPARE.keys())
    for i in range(len(SHPS)):
        for e in range(i + 1, len(SHPS)):
            # Optimized Union
            print("Union between {} and {}".format(SHPS[i], SHPS[e]))
            time_a = datetime.datetime.now().replace(microsecond=0)
            __unShp = optimized_union_anls(
                SHPS[i],
                SHPS[e],
                os.path.join(OUT_FOLDER, "un_{}_{}.shp".format(i, e)),
                GRASS_REGION_TEMPLATE,
                os.path.join(OUT_FOLDER, "work_{}_{}".format(i, e)),
                multiProcess=True)
            time_b = datetime.datetime.now().replace(microsecond=0)
            print(time_b - time_a)

            # Rename cols
            unShp = rn_cols(
                __unShp, {
                    "a_" + __SHAPES_TO_COMPARE[SHPS[i]]:
                    __SHAPES_TO_COMPARE[SHPS[i]],
                    "b_" + __SHAPES_TO_COMPARE[SHPS[e]]:
                    __SHAPES_TO_COMPARE[SHPS[e]]
                })

            UNION_SHAPE[(SHPS[i], SHPS[e])] = unShp

    # Send data to postgresql
    SYNTH_TBL = {}

    for uShp in UNION_SHAPE:
        # Send data to PostgreSQL
        union_tbl = shp_to_psql(DB, UNION_SHAPE[uShp], api='shp2pgsql')

        # Produce table with % of area equal in both maps
        areaMapTbl = q_to_ntbl(
            DB,
            "{}_syn".format(union_tbl),
            ("SELECT CAST('{lulc_1}' AS text) AS lulc_1, "
             "CAST('{lulc_2}' AS text) AS lulc_2, "
             "round("
             "CAST(SUM(g_area) / 1000000 AS numeric), 4"
             ") AS agree_area, round("
             "CAST((SUM(g_area) / MIN(total_area)) * 100 AS numeric), 4"
             ") AS agree_percentage, "
             "round("
             "CAST(MIN(total_area) / 1000000 AS numeric), 4"
             ") AS total_area FROM ("
             "SELECT {map1_cls}, {map2_cls}, ST_Area(geom) AS g_area, "
             "CASE "
             "WHEN {map1_cls} = {map2_cls} "
             "THEN 1 ELSE 0 "
             "END AS isthesame, total_area FROM {tbl}, ("
             "SELECT SUM(ST_Area(geom)) AS total_area FROM {tbl}"
             ") AS foo2"
             ") AS foo WHERE isthesame = 1 "
             "GROUP BY isthesame").format(
                 lulc_1=fprop(uShp[0], 'fn'),
                 lulc_2=fprop(uShp[1], 'fn'),
                 map1_cls=__SHAPES_TO_COMPARE[uShp[0]],
                 map2_cls=__SHAPES_TO_COMPARE[uShp[1]],
                 tbl=union_tbl),
            api='psql')

        # Produce confusion matrix for the pair in comparison
        matrixTbl = tbl_to_area_mtx(DB, union_tbl,
                                    __SHAPES_TO_COMPARE[uShp[0]],
                                    __SHAPES_TO_COMPARE[uShp[1]],
                                    union_tbl + '_mtx')

        SYNTH_TBL[uShp] = {"TOTAL": areaMapTbl, "MATRIX": matrixTbl}

    # UNION ALL TOTAL TABLES
    total_table = tbls_to_tbl(DB, [SYNTH_TBL[k]["TOTAL"] for k in SYNTH_TBL],
                              'total_table')

    # Create table with % of agreement between each pair of maps
    mapsNames = q_to_obj(
        DB,
        ("SELECT lulc FROM ("
         "SELECT lulc_1 AS lulc FROM {tbl} GROUP BY lulc_1 "
         "UNION ALL "
         "SELECT lulc_2 AS lulc FROM {tbl} GROUP BY lulc_2"
         ") AS lu GROUP BY lulc ORDER BY lulc").format(tbl=total_table),
        db_api='psql').lulc.tolist()

    FLDS_TO_PIVOT = ["agree_percentage", "total_area"]

    Q = ("SELECT * FROM crosstab('"
         "SELECT CASE "
         "WHEN foo.lulc_1 IS NOT NULL THEN foo.lulc_1 ELSE jtbl.tmp1 "
         "END AS lulc_1, CASE "
         "WHEN foo.lulc_2 IS NOT NULL THEN foo.lulc_2 ELSE jtbl.tmp2 "
         "END AS lulc_2, CASE "
         "WHEN foo.{valCol} IS NOT NULL THEN foo.{valCol} ELSE 0 "
         "END AS agree_percentage FROM ("
         "SELECT lulc_1, lulc_2, {valCol} FROM {tbl} UNION ALL "
         "SELECT lulc_1, lulc_2, {valCol} FROM ("
         "SELECT lulc_1 AS lulc_2, lulc_2 AS lulc_1, {valCol} "
         "FROM {tbl}"
         ") AS tst"
         ") AS foo FULL JOIN ("
         "SELECT lulc_1 AS tmp1, lulc_2 AS tmp2 FROM ("
         "SELECT lulc_1 AS lulc_1 FROM {tbl} GROUP BY lulc_1 "
         "UNION ALL "
         "SELECT lulc_2 AS lulc_1 FROM {tbl} GROUP BY lulc_2"
         ") AS tst_1, ("
         "SELECT lulc_1 AS lulc_2 FROM {tbl} GROUP BY lulc_1 "
         "UNION ALL "
         "SELECT lulc_2 AS lulc_2 FROM {tbl} GROUP BY lulc_2"
         ") AS tst_2 WHERE lulc_1 = lulc_2 GROUP BY lulc_1, lulc_2"
         ") AS jtbl ON foo.lulc_1 = jtbl.tmp1 AND foo.lulc_2 = jtbl.tmp2 "
         "ORDER BY lulc_1, lulc_2"
         "') AS ct("
         "lulc_map text, {crossCols}"
         ")")

    TOTAL_AGREE_TABLE = None
    TOTAL_AREA_TABLE = None
    for f in FLDS_TO_PIVOT:
        if not TOTAL_AGREE_TABLE:
            TOTAL_AGREE_TABLE = q_to_ntbl(
                DB,
                "agreement_table",
                Q.format(tbl=total_table,
                         valCol=f,
                         crossCols=", ".join([
                             "{} numeric".format(map_) for map_ in mapsNames
                         ])),
                api='psql')

        else:
            TOTAL_AREA_TABLE = q_to_ntbl(DB,
                                         "area_table",
                                         Q.format(tbl=total_table,
                                                  valCol=f,
                                                  crossCols=", ".join([
                                                      "{} numeric".format(map_)
                                                      for map_ in mapsNames
                                                  ])),
                                         api='psql')

    # Union Mapping
    UNION_MAPPING = pandas.DataFrame(
        [[k[0], k[1], fprop(UNION_SHAPE[k], 'fn')] for k in UNION_SHAPE],
        columns=['shp_a', 'shp_b', 'union_shp'])

    UNION_MAPPING = df_to_db(DB, UNION_MAPPING, 'union_map', api='psql')

    # Export Results
    TABLES = [UNION_MAPPING, TOTAL_AGREE_TABLE, TOTAL_AREA_TABLE
              ] + [SYNTH_TBL[x]["MATRIX"] for x in SYNTH_TBL]

    SHEETS = ["union_map", "agreement_percentage", "area_with_data_km"] + [
        "{}_{}".format(fprop(x[0], 'fn')[:15],
                       fprop(x[1], 'fn')[:15]) for x in SYNTH_TBL
    ]

    db_to_tbl(DB, ["SELECT * FROM {}".format(x) for x in TABLES],
              REPORT,
              sheetsNames=SHEETS,
              dbAPI='psql')

    return REPORT
示例#11
0
def optimized_union_anls(lyr_a,
                         lyr_b,
                         outShp,
                         ref_boundary,
                         workspace=None,
                         multiProcess=None):
    """
    Optimized Union Analysis
    
    Goal: optimize v.overlay performance for Union operations
    """

    import os
    from gasp.pyt.oss import fprop, lst_ff
    from gasp.pyt.oss import cpu_cores
    from gasp.gt.sample import create_fishnet
    from gasp.gt.wenv.grs import run_grass
    from gasp.gt.toshp import eachfeat_to_newshp
    from gasp.gt.toshp.mtos import shps_to_shp
    from gasp.gt.attr import split_shp_by_attr
    from gasp.gt.torst import shpext_to_rst
    from gasp.gt.prop.ext import get_ext

    if workspace:
        if not os.path.exists(workspace):
            from gasp.pyt.oss import mkdir

            mkdir(workspace, overwrite=True)

    else:
        from gasp.pyt.oss import mkdir

        workspace = mkdir(os.path.join(os.path.dirname(outShp), "union_work"))

    # Create Fishnet
    ncpu = cpu_cores()
    if ncpu == 12:
        nrow = 4
        ncol = 3
    elif ncpu == 8:
        nrow = 4
        ncol = 2
    else:
        nrow = 2
        ncol = 2

    ext = get_ext(ref_boundary)
    width = (ext[1] - ext[0]) / ncol
    height = (ext[3] - ext[2]) / nrow

    gridShp = create_fishnet(ref_boundary,
                             os.path.join(workspace, 'ref_grid.shp'),
                             width,
                             height,
                             xy_row_col=None)

    # Split Fishnet in several files
    cellsShp = eachfeat_to_newshp(gridShp, workspace)

    if not multiProcess:
        # INIT GRASS GIS Session
        grsbase = run_grass(workspace, location="grs_loc", srs=ref_boundary)

        import grass.script.setup as gsetup

        gsetup.init(grsbase, workspace, "grs_loc", 'PERMANENT')

        # Add data to GRASS GIS
        from gasp.gt.toshp.cff import shp_to_grs

        cellsShp = [
            shp_to_grs(shp, fprop(shp, 'fn'), asCMD=True) for shp in cellsShp
        ]

        LYR_A = shp_to_grs(lyr_a, fprop(lyr_a, 'fn'), asCMD=True)
        LYR_B = shp_to_grs(lyr_b, fprop(lyr_b, 'fn'), asCMD=True)

        # Clip Layers A and B for each CELL in fishnet
        LYRS_A = [
            clip(LYR_A, cellsShp[x], LYR_A + "_" + str(x), api_gis="grass")
            for x in range(len(cellsShp))
        ]
        LYRS_B = [
            clip(LYR_B, cellsShp[x], LYR_B + "_" + str(x), api_gis="grass")
            for x in range(len(cellsShp))
        ]

        # Union SHPS
        UNION_SHP = [
            union(LYRS_A[i], LYRS_B[i], "un_{}".format(i), api_gis="grass")
            for i in range(len(cellsShp))
        ]

        # Export Data
        from gasp.gt.toshp.cff import grs_to_shp

        _UNION_SHP = [
            grs_to_shp(shp, os.path.join(workspace, shp + ".shp"), "area")
            for shp in UNION_SHP
        ]

    else:

        def clip_and_union(la, lb, cell, work, proc, output):
            ref_rst = shpext_to_rst(cell,
                                    os.path.join(os.path.dirname(cell),
                                                 fprop(cell, 'fn') + '.tif'),
                                    cellsize=10)

            # Start GRASS GIS Session
            loc = "proc_" + str(proc)
            grsbase = run_grass(work, location=loc, srs=ref_rst)
            import grass.script.setup as gsetup
            gsetup.init(grsbase, work, loc, 'PERMANENT')

            # Import GRASS GIS modules
            from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
            from gasp.gt.prop.feat import feat_count

            # Add data to GRASS
            a = shp_to_grs(la, fprop(la, 'fn'), filterByReg=True, asCMD=True)
            b = shp_to_grs(lb, fprop(lb, 'fn'), filterByReg=True, asCMD=True)

            if not feat_count(a, gisApi="grass", work=work, loc=loc):
                return

            if not feat_count(b, gisApi="grass", work=work, loc=loc):
                return

            # Clip
            a_clip = clip(a,
                          None,
                          "{}_clip".format(a),
                          api_gis="grass",
                          clip_by_region=True)
            b_clip = clip(b,
                          None,
                          "{}_clip".format(b),
                          api_gis="grass",
                          clip_by_region=True)

            # Union
            u_shp = union(a_clip,
                          b_clip,
                          "un_{}".format(fprop(cell, 'fn')),
                          api_gis="grass")

            # Export
            o = grs_to_shp(u_shp, output, "area")

        import multiprocessing

        thrds = [
            multiprocessing.Process(
                target=clip_and_union,
                name="th-{}".format(i),
                args=(lyr_a, lyr_b, cellsShp[i],
                      os.path.join(workspace, "th_{}".format(i)), i,
                      os.path.join(workspace, "uniao_{}.shp".format(i))))
            for i in range(len(cellsShp))
        ]

        for t in thrds:
            t.start()

        for t in thrds:
            t.join()

        ff_shp = lst_ff(workspace, file_format='.shp')
        _UNION_SHP = []
        for i in range(len(cellsShp)):
            p = os.path.join(workspace, "uniao_{}.shp".format(i))

            if p in ff_shp:
                _UNION_SHP.append(p)
            else:
                continue

    # Merge all union into the same layer
    MERGED_SHP = shps_to_shp(_UNION_SHP, outShp, api="ogr2ogr")

    return MERGED_SHP
示例#12
0
def lulc_by_cell(tid, boundary, lulc_shps, fishnet, result, workspace):
    bname = fprop(boundary, 'fn')
    # Boundary to Raster
    ref_rst = shp_to_rst(boundary, None, 10, 0,
                         os.path.join(workspace, 'rst_{}.tif'.format(bname)))

    # Create GRASS GIS Session
    loc_name = 'loc_' + bname
    gbase = run_grass(workspace, location=loc_name, srs=ref_rst)

    import grass.script as grass
    import grass.script.setup as gsetup

    gsetup.init(gbase, workspace, loc_name, 'PERMANENT')

    # GRASS GIS Modules
    from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
    from gasp.gt.gop.ovlay import intersection
    from gasp.gt.tbl.attr import geomattr_to_db
    from gasp.gt.prop.feat import feat_count

    # Send Fishnet to GRASS GIS
    fnet = shp_to_grs(fishnet, fprop(fishnet, 'fn'), asCMD=True)

    # Processing
    ulst = []
    l_lulc_grs = []
    for shp in lulc_shps:
        iname = fprop(shp, 'fn')

        # LULC Class to GRASS GIS
        lulc_grs = shp_to_grs(shp, iname, filterByReg=True, asCMD=True)

        if not feat_count(
                lulc_grs, gisApi='grass', work=workspace, loc=loc_name):
            continue

        # Intersect Fishnet | LULC CLass
        union_grs = intersection(fnet, lulc_grs, iname + '_i', api="grass")

        # Get Areas
        geomattr_to_db(union_grs, "areav", "area", "boundary", unit='meters')

        # Export Table
        funion = grs_to_shp(union_grs, os.path.join(result, iname + '.shp'),
                            'area')

        ulst.append(funion)
        l_lulc_grs.append(lulc_grs)

    # Intersect between all LULC SHPS
    ist_shp = []
    if len(l_lulc_grs) > 1:
        for i in range(len(l_lulc_grs)):
            for e in range(i + 1, len(l_lulc_grs)):
                ishp = intersection(l_lulc_grs[i],
                                    l_lulc_grs[e],
                                    'lulcint_' + str(i) + '_' + str(e),
                                    api="grass")

                if not feat_count(
                        ishp, gisApi='grass', work=workspace, loc=loc_name):
                    continue
                else:
                    ist_shp.append(ishp)

        if len(ist_shp):
            from gasp.gt.gop.genze import dissolve
            from gasp.gt.tbl.grs import reset_table

            if len(ist_shp) > 1:
                from gasp.gt.toshp.mtos import shps_to_shp

                # Export shapes
                _ist_shp = [
                    grs_to_shp(s, os.path.join(workspace, loc_name,
                                               s + '.shp'), 'area')
                    for s in ist_shp
                ]

                # Merge Intersections
                merge_shp = shps_to_shp(_ist_shp,
                                        os.path.join(workspace, loc_name,
                                                     'merge_shp.shp'),
                                        api='pandas')

                # Import GRASS
                merge_shp = shp_to_grs(merge_shp, 'merge_shp')

            else:
                merge_shp = ist_shp[0]

            # Dissolve Shape
            reset_table(merge_shp, {'refid': 'varchar(2)'}, {'refid': '1'})
            overlay_areas = dissolve(merge_shp,
                                     'overlay_areas',
                                     'refid',
                                     api='grass')

            # Union Fishnet | Overlay's
            union_ovl = intersection(fnet,
                                     overlay_areas,
                                     'ovl_union',
                                     api="grass")

            funion_ovl = grs_to_shp(union_ovl,
                                    os.path.join(result, union_ovl + '.shp'),
                                    'area')

            ulst.append(funion_ovl)

    # Export Tables
    return ulst
示例#13
0
def make_dem(grass_workspace,
             data,
             field,
             output,
             extent_template,
             method="IDW",
             cell_size=None,
             mask=None):
    """
    Create Digital Elevation Model
    
    Methods Available:
    * IDW;
    * BSPLINE;
    * SPLINE;
    * CONTOUR;
    """

    from gasp.pyt.oss import fprop
    from gasp.gt.wenv.grs import run_grass
    from gasp.gt.prop.prj import get_epsg

    LOC_NAME = fprop(data, 'fn', forceLower=True)[:5] + "_loc"

    # Get EPSG From Raster
    EPSG = get_epsg(extent_template)
    if not EPSG:
        raise ValueError(
            'Cannot get EPSG code of Extent Template File ({})'.format(
                extent_template))

    # Know if data geometry are points
    if method == 'BSPLINE' or method == 'SPLINE':
        from gasp.gt.prop.feat import get_gtype

        data_gtype = get_gtype(data, gisApi='ogr')

    # Create GRASS GIS Location
    grass_base = run_grass(grass_workspace, location=LOC_NAME, srs=EPSG)

    # Start GRASS GIS Session
    import grass.script as grass
    import grass.script.setup as gsetup
    gsetup.init(grass_base, grass_workspace, LOC_NAME, 'PERMANENT')

    # Get Extent Raster
    ref_template = ob_ref_rst(extent_template,
                              os.path.join(grass_workspace, LOC_NAME),
                              cellsize=cell_size)

    # IMPORT GRASS GIS MODULES #
    from gasp.gt.torst import rst_to_grs, grs_to_rst
    from gasp.gt.toshp.cff import shp_to_grs
    from gasp.gt.wenv.grs import rst_to_region

    # Configure region
    rst_to_grs(ref_template, 'extent')
    rst_to_region('extent')

    # Convert elevation "data" to GRASS Vector
    elv = shp_to_grs(data, 'elevation')

    OUTPUT_NAME = fprop(output, 'fn', forceLower=True)

    if method == "BSPLINE":
        from gasp.gt.nop.itp import bspline

        # Convert to points if necessary
        if data_gtype != 'POINT' and data_gtype != 'MULTIPOINT':
            from gasp.gt.toshp.cgeo import feat_vertex_to_pnt

            elev_pnt = feat_vertex_to_pnt(elv, "elev_pnt", nodes=None)
        else:
            elev_pnt = elv

        outRst = bspline(elev_pnt,
                         field,
                         OUTPUT_NAME,
                         mway='bicubic',
                         lyrN=1,
                         asCMD=True)

    elif method == "SPLINE":
        from gasp.gt.nop.itp import surfrst

        # Convert to points if necessary
        if data_gtype != 'POINT' and data_gtype != 'MULTIPOINT':
            from gasp.gt.toshp.cgeo import feat_vertex_to_pnt
            elev_pnt = feat_vertex_to_pnt(elv, "elev_pnt", nodes=None)
        else:
            elev_pnt = elv

        outRst = surfrst(elev_pnt, field, OUTPUT_NAME, lyrN=1, ascmd=True)

    elif method == "CONTOUR":
        from gasp.gt.torst import shp_to_rst
        from gasp.gt.nop.itp import surfcontour

        # Apply mask if mask
        if mask:
            from gasp.gt.torst import grs_to_mask, rst_to_grs

            rst_mask = rst_to_grs(mask, 'rst_mask', as_cmd=True)
            grs_to_mask(rst_mask)

        # Elevation (GRASS Vector) to Raster
        elevRst = shp_to_rst(elv,
                             field,
                             None,
                             None,
                             'rst_elevation',
                             api="pygrass")

        # Run Interpolator
        outRst = surfcontour(elevRst, OUTPUT_NAME, ascmd=True)

    elif method == "IDW":
        from gasp.gt.nop.itp import ridw
        from gasp.gt.nop.alg import rstcalc
        from gasp.gt.torst import shp_to_rst

        # Elevation (GRASS Vector) to Raster
        elevRst = shp_to_rst(elv,
                             field,
                             None,
                             None,
                             'rst_elevation',
                             api='pygrass')
        # Multiply cells values by 100 000.0
        rstcalc('int(rst_elevation * 100000)', 'rst_elev_int', api='pygrass')
        # Run IDW to generate the new DEM
        ridw('rst_elev_int', 'dem_int', numberPoints=15)
        # DEM to Float
        rstcalc('dem_int / 100000.0', OUTPUT_NAME, api='pygrass')

    # Export DEM to a file outside GRASS Workspace
    grs_to_rst(OUTPUT_NAME, output)

    return output
示例#14
0
    def run_viewshed_by_cpu(tid,
                            db,
                            obs,
                            dem,
                            srs,
                            vis_basename='vis',
                            maxdst=None,
                            obselevation=None):
        # Create Database
        new_db = create_db("{}_{}".format(db, str(tid)), api='psql')

        # Points to Database
        pnt_tbl = df_to_db(new_db,
                           obs,
                           'pnt_tbl',
                           api='psql',
                           epsg=srs,
                           geomType='Point',
                           colGeom='geometry')

        # Create GRASS GIS Session
        workspace = mkdir(
            os.path.join(os.path.dirname(dem), 'work_{}'.format(str(tid))))
        loc_name = 'vis_loc'
        gbase = run_grass(workspace, location=loc_name, srs=dem)

        # Start GRASS GIS Session
        import grass.script as grass
        import grass.script.setup as gsetup
        gsetup.init(gbase, workspace, loc_name, 'PERMANENT')

        from gasp.gt.torst import rst_to_grs, grs_to_rst
        from gasp.gt.nop.surf import grs_viewshed
        from gasp.gt.deldt import del_rst

        # Send DEM to GRASS GIS
        grs_dem = rst_to_grs(dem, 'grs_dem', as_cmd=True)

        # Produce Viewshed for each point in obs
        for idx, row in obs.iterrows():
            # Get Viewshed raster
            vrst = grs_viewshed(grs_dem, (row.geometry.x, row.geometry.y),
                                '{}_{}'.format(vis_basename, str(row[obs_id])),
                                max_dist=maxdst,
                                obs_elv=obselevation)

            # Export Raster to File
            frst = grs_to_rst(vrst, os.path.join(workspace, vrst + '.tif'))

            # Raster to Array
            img = gdal.Open(frst)
            num = img.ReadAsArray()

            # Two Dimension to One Dimension
            # Reshape Array
            numone = num.reshape(num.shape[0] * num.shape[1])

            # Get Indexes with visibility
            visnum = np.arange(numone.shape[0]).astype(np.uint32)
            visnum = visnum[numone == 1]

            # Get rows indexes
            visrow = visnum / num.shape[0]
            visrow = visrow.astype(np.uint32)

            # Get cols indexes
            viscol = visnum - (visrow * num.shape[1])

            # Visibility indexes to Pandas DataFrame
            idxnum = np.full(visrow.shape, row[obs_id])
            visdf = pd.DataFrame({
                'pntid': idxnum,
                'rowi': visrow,
                'coli': viscol
            })

            # Pandas DF to database
            # Create Visibility table
            df_to_db(new_db,
                     visdf,
                     vis_basename,
                     api='psql',
                     colGeom=None,
                     append=None if not idx else True)

            # Delete all variables
            numone = None
            visnum = None
            visrow = None
            viscol = None
            idxnum = None
            visdf = None
            del img

            # Delete GRASS GIS File
            del_rst(vrst)

            # Delete TIFF File
            del_file(frst)
            frst = None
示例#15
0
文件: joins.py 项目: jasp382/gasp
def joinLines_by_spatial_rel_raster(mainLines, mainId, joinLines, joinCol,
                                    outfile, epsg):
    """
    Join Attributes based on a spatial overlap.
    An raster based approach
    """

    import os
    import pandas
    from geopandas import GeoDataFrame
    from gasp.gt.fmshp import shp_to_obj
    from gasp.gt.toshp import df_to_shp
    from gasp.gt.toshp.coord import shpext_to_boundshp
    from gasp.gt.torst import shp_to_rst
    from gasp.g.to import df_to_geodf
    from gasp.gt.wenv.grs import run_grass
    from gasp.pyt.df.joins import join_dfs
    from gasp.pyt.df.agg import df_groupBy
    from gasp.pyt.oss import fprop, mkdir

    workspace = mkdir(os.path.join(os.path.dirname(mainLines, 'tmp_dt')))

    # Create boundary file
    boundary = shpext_to_boundshp(mainLines,
                                  os.path.join(workspace, "bound.shp"), epsg)

    boundRst = shp_to_rst(boundary,
                          None,
                          5,
                          -99,
                          os.path.join(workspace, "rst_base.tif"),
                          epsg=epsg,
                          api='gdal')

    # Start GRASS GIS Session
    gbase = run_grass(workspace, location="grs_loc", srs=boundRst)

    import grass.script as grass
    import grass.script.setup as gsetup

    gsetup.init(gbase, workspace, "grs_loc", "PERMANENT")

    from gasp.gt.nop.local import combine
    from gasp.gt.prop.rst import get_rst_report_data
    from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
    from gasp.gt.torst import shp_to_rst

    # Add data to GRASS GIS
    mainVector = shp_to_grs(mainLines, fprop(mainLines, 'fn', forceLower=True))
    joinVector = shp_to_grs(joinLines, fprop(joinLines, 'fn', forceLower=True))

    mainRst = shp_to_rst(mainVector,
                         mainId,
                         None,
                         None,
                         "rst_" + mainVector,
                         api='pygrass')
    joinRst = shp_to_rst(joinVector,
                         joinCol,
                         None,
                         None,
                         "rst_" + joinVector,
                         api='pygrass')

    combRst = combine(mainRst, joinRst, "combine_rst", api="pygrass")

    combine_data = get_rst_report_data(combRst, UNITS="c")

    combDf = pandas.DataFrame(combine_data,
                              columns=["comb_cat", "rst_1", "rst_2", "ncells"])
    combDf = combDf[combDf["rst_2"] != '0']
    combDf["ncells"] = combDf["ncells"].astype(int)

    gbdata = df_groupBy(combDf, ["rst_1"], "MAX", "ncells")

    fTable = join_dfs(gbdata, combDf, ["rst_1", "ncells"], ["rst_1", "ncells"])

    fTable["rst_2"] = fTable["rst_2"].astype(int)
    fTable = df_groupBy(fTable, ["rst_1", "ncells"],
                        STAT='MIN',
                        STAT_FIELD="rst_2")

    mainLinesCat = grs_to_shp(mainVector,
                              os.path.join(workspace, mainVector + '.shp'),
                              'line')

    mainLinesDf = shp_to_obj(mainLinesCat)

    resultDf = join_dfs(mainLinesDf,
                        fTable,
                        "cat",
                        "rst_1",
                        onlyCombinations=None)

    resultDf.rename(columns={"rst_2": joinCol}, inplace=True)

    resultDf = df_to_geodf(resultDf, "geometry", epsg)

    df_to_shp(resultDf, outfile)

    return outfile
示例#16
0
def shp_diff_fm_ref(refshp, refcol, shps, out_folder, refrst, db=None):
    """
    Check differences between each shp in shps and one reference shape

    Dependencies:
    - GRASS;
    - PostgreSQL with Postgis or GeoPandas;
    """

    import os
    from gasp.gt.prop.ff import check_isRaster
    from gasp.gt.wenv.grs import run_grass
    from gasp.pyt.oss import fprop
    from gasp.gt.tbl.tomtx import tbl_to_areamtx

    # Check if folder exists, if not create it
    if not os.path.exists(out_folder):
        from gasp.pyt.oss import mkdir
        mkdir(out_folder)

    # Start GRASS GIS Session
    gbase = run_grass(out_folder,
                      grassBIN='grass78',
                      location='shpdif',
                      srs=refrst)

    import grass.script.setup as gsetup

    gsetup.init(gbase, out_folder, 'shpdif', 'PERMANENT')

    from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
    from gasp.gt.torst import rst_to_grs
    from gasp.gt.tbl.fld import rn_cols
    from gasp.gt.toshp.rst import rst_to_polyg

    # Convert to SHAPE if file is Raster
    # Rename interest columns
    i = 0
    lstff = [refshp] + list(shps.keys())
    __shps = {}
    for s in lstff:
        is_rst = check_isRaster(s)

        if is_rst:
            # To GRASS
            rname = fprop(s, 'fn')
            inrst = rst_to_grs(s, "rst_" + rname, as_cmd=True)

            # To vector
            d = rst_to_polyg(inrst,
                             rname,
                             rstColumn="lulc_{}".format(str(i)),
                             gisApi="grass")

        else:
            # To GRASS
            d = shp_to_grs(s, fprop(s, 'fn'), asCMD=True)

            # Change name of interest colum
            rn_cols(d, {shps[s] if i else refcol: "lulc_{}".format(str(i))},
                    api="grass")

        # Export To Shapefile
        if not i:
            refshp = grs_to_shp(d, os.path.join(out_folder, d + '.shp'),
                                'area')
            refcol = "lulc_{}".format(str(i))

        else:
            shp = grs_to_shp(d, os.path.join(out_folder, d + '.shp'), 'area')
            __shps[shp] = "lulc_{}".format(str(i))

        i += 1

    # Union Shapefiles
    union_shape = {}

    for shp in __shps:
        # Optimized Union
        sname = fprop(shp, 'fn')
        union_shape[shp] = optimized_union_anls(
            shp,
            refshp,
            os.path.join(out_folder, sname + '_un.shp'),
            refrst,
            os.path.join(out_folder, "wk_" + sname),
            multiProcess=True)

        # Produce confusion matrices
        mtxf = tbl_to_areamtx(union_shape[shp],
                              "a_" + __shps[shp],
                              'b_' + refcol,
                              os.path.join(out_folder, sname + '.xlsx'),
                              db=db,
                              with_metrics=True)

    return out_folder
示例#17
0
文件: rmp.py 项目: jasp382/gasp
def match_cellsize_and_clip(rstBands, refRaster, outFolder,
                            clipShp=None):
    """
    Resample images to make them with the same resolution and clip
    
    Good to resample Sentinel bands with more than 10 meters.
    
    Dependencies: 
    * GRASS GIS;
    * GDAL/OGR.
    """
    
    import os
    from gasp.gt.prop.prj import get_rst_epsg
    from gasp.gt.wenv.grs import run_grass
    from gasp.pyt.oss     import fprop, mkdir
    
    # Check if outfolder exists
    if not os.path.exists(outFolder):
        mkdir(outFolder, overwrite=None)
    
    # Get EPSG from refRaster
    epsg = get_rst_epsg(refRaster, returnIsProj=None)
    
    """
    Start GRASS GIS Session
    """
    GRS_WORKSPACE = mkdir(os.path.join(outFolder, 'grswork'))
    grsb = run_grass(
        GRS_WORKSPACE, grassBIN='grass78', location='resample',
        srs=epsg
    )
    
    import grass.script as grass
    import grass.script.setup as gsetup
    
    gsetup.init(grsb, GRS_WORKSPACE, 'resample', 'PERMANENT')
    
    """
    Import packages related with GRASS GIS
    """
    from gasp.gt.torst     import rst_to_grs, grs_to_rst
    from gasp.gt.wenv.grs  import rst_to_region
    from gasp.gt.toshp.cff import shp_to_grs
    from gasp.gt.torst     import shp_to_rst, grs_to_mask
    
    # Send Ref Raster to GRASS GIS and set region
    extRst = rst_to_grs(refRaster, 'ext_rst')
    rst_to_region(extRst)
    
    # Import all bands in rstBands
    grs_bands = [rst_to_grs(i, fprop(i, 'fn')) for i in rstBands]
    
    if clipShp:
        # Add clipShp to GRASS
        grs_clip = shp_to_grs(clipShp, fprop(clipShp, 'fn'), asCMD=True)

        # SHP to Raster
        rstClip = shp_to_rst(
            grs_clip, 1, None, 0, 'rst_' + grs_clip,
            api='grass'
        )

        # Set region using
        rst_to_region(rstClip)

        # Set mask
        grs_to_mask(rstClip)
    
    # Export bands
    return [grs_to_rst(
        i, os.path.join(outFolder, i + '.tif')
    ) for i in grs_bands]
示例#18
0
文件: brk.py 项目: jasp382/gasp
def v_break_at_points(workspace, loc, lineShp, pntShp, db, srs, out_correct,
            out_tocorrect):
    """
    Break lines at points - Based on GRASS GIS v.edit
    
    Use PostGIS to sanitize the result
    
    TODO: Confirm utility
    Problem: GRASS GIS always uses the first line to break.
    """
    
    import os
    from gasp.gql.to       import shp_to_psql
    from gasp.gt.toshp.db  import dbtbl_to_shp
    from gasp.gt.wenv.grs  import run_grass
    from gasp.pyt.oss      import fprop
    from gasp.sql.db       import create_db
    from gasp.sql.to       import q_to_ntbl
    
    tmpFiles = os.path.join(workspace, loc)
    
    gbase = run_grass(workspace, location=loc, srs=srs)
    
    import grass.script       as grass
    import grass.script.setup as gsetup
    
    gsetup.init(gbase, workspace, loc, 'PERMANENT')
    
    from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp
    
    grsLine = shp_to_grs(
        lineShp, fprop(lineShp, 'fn', forceLower=True)
    )
    
    vedit_break(grsLine, pntShp, geomType='line')
    
    LINES = grs_to_shp(grsLine, os.path.join(
        tmpFiles, grsLine + '_v1.shp'), 'line')
    
    # Sanitize output of v.edit.break using PostGIS
    create_db(db, overwrite=True, api='psql')
    
    LINES_TABLE = shp_to_psql(
        db, LINES, srsEpsgCode=srs,
        pgTable=fprop(LINES, 'fn', forceLower=True), api="shp2pgsql"
    )
    
    # Delete old/original lines and stay only with the breaked one
    Q = (
        "SELECT {t}.*, foo.cat_count FROM {t} INNER JOIN ("
            "SELECT cat, COUNT(cat) AS cat_count, "
            "MAX(ST_Length(geom)) AS max_len "
            "FROM {t} GROUP BY cat"
        ") AS foo ON {t}.cat = foo.cat "
        "WHERE foo.cat_count = 1 OR foo.cat_count = 2 OR ("
            "foo.cat_count = 3 AND ST_Length({t}.geom) <= foo.max_len)"
    ).format(t=LINES_TABLE)
    
    CORR_LINES = q_to_ntbl(
        db, "{}_corrected".format(LINES_TABLE), Q, api='psql'
    )
    
    # TODO: Delete Rows that have exactly the same geometry
    
    # Highlight problems that the user must solve case by case
    Q = (
        "SELECT {t}.*, foo.cat_count FROM {t} INNER JOIN ("
            "SELECT cat, COUNT(cat) AS cat_count FROM {t} GROUP BY cat"
        ") AS foo ON {t}.cat = foo.cat "
        "WHERE foo.cat_count > 3"
    ).format(t=LINES_TABLE)
    
    ERROR_LINES = q_to_ntbl(
        db, "{}_not_corr".format(LINES_TABLE), Q, api='psql'
    )
    
    dbtbl_to_shp(
        db, CORR_LINES, "geom", out_correct,
        api="pgsql2shp"
    )
    
    dbtbl_to_shp(
        db, ERROR_LINES, "geom", out_tocorrect,
        api="pgsql2shp"
    )