def run_viewshed_by_cpu(tid, obs, dem, output, vis_basename='vis', maxdst=None, obselevation=None): # Create GRASS GIS Session loc_name = 'loc_' + str(tid) gbase = run_grass(output, location=loc_name, srs=dem) # Start GRASS GIS Session import grass.script as grass import grass.script.setup as gsetup gsetup.init(gbase, output, loc_name, 'PERMANENT') from gasp.gt.torst import rst_to_grs, grs_to_rst from gasp.gt.nop.surf import grs_viewshed # Send DEM to GRASS GIS grs_dem = rst_to_grs(dem, 'grs_dem', as_cmd=True) # Produce Viewshed for each point in obs for idx, row in obs.iterrows(): vrst = grs_viewshed(grs_dem, (row.geometry.x, row.geometry.y), '{}_{}'.format(vis_basename, str(row[obs_id])), max_dist=maxdst, obs_elv=obselevation) frst = grs_to_rst(vrst, os.path.join(output, vrst + '.tif'))
def clip_and_union(la, lb, cell, work, proc, output): ref_rst = shpext_to_rst(cell, os.path.join(os.path.dirname(cell), fprop(cell, 'fn') + '.tif'), cellsize=10) # Start GRASS GIS Session loc = "proc_" + str(proc) grsbase = run_grass(work, location=loc, srs=ref_rst) import grass.script.setup as gsetup gsetup.init(grsbase, work, loc, 'PERMANENT') # Import GRASS GIS modules from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.prop.feat import feat_count # Add data to GRASS a = shp_to_grs(la, fprop(la, 'fn'), filterByReg=True, asCMD=True) b = shp_to_grs(lb, fprop(lb, 'fn'), filterByReg=True, asCMD=True) if not feat_count(a, gisApi="grass", work=work, loc=loc): return if not feat_count(b, gisApi="grass", work=work, loc=loc): return # Clip a_clip = clip(a, None, "{}_clip".format(a), api_gis="grass", clip_by_region=True) b_clip = clip(b, None, "{}_clip".format(b), api_gis="grass", clip_by_region=True) # Union u_shp = union(a_clip, b_clip, "un_{}".format(fprop(cell, 'fn')), api_gis="grass") # Export o = grs_to_shp(u_shp, output, "area")
def multi_run(ti, df, ofolder): loc_name = 'loc_{}'.format(str(ti)) grsbase = run_grass(ofolder, location=loc_name, srs=srs_epsg) import grass.script.setup as gsetup gsetup.init(grsbase, ofolder, loc_name, 'PERMANENT') from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.gop.ovlay import union for idx, row in df.iterrows(): # Import data into GRASS GIS lyr_a = shp_to_grs(df.shp_a, fprop(df.shp_a, 'fn'), asCMD=True) lyr_b = shp_to_grs(df.shp_b, fprop(df.shp_b, 'fn'), asCMD=True) # Run Union shpUnion = union(lyr_a, lyr_b, lyr_a[:10] + '_' + lyr_b[:10], api_gis="grass") # Export data result = grs_to_shp(shpUnion, os.path.join(ofolder, shpUnion + '.shp'), "area")
def join_attr_by_distance(mainTable, joinTable, workGrass, epsg_code, output): """ Find nearest feature and join attributes of the nearest feature to the mainTable Uses GRASS GIS to find near lines. """ import os from gasp.gt.wenv.grs import run_grass from gasp.gt.fmshp import shp_to_obj from gasp.g.to import df_to_geodf from gasp.gt.toshp import df_to_shp from gasp.pyt.oss import fprop # Create GRASS GIS Location grassBase = run_grass(workGrass, location='join_loc', srs=epsg_code) import grass.script as grass import grass.script.setup as gsetup gsetup.init(grassBase, workGrass, 'join_loc', 'PERMANENT') # Import some GRASS GIS tools from gasp.gt.prox import grs_near as near from gasp.gt.tbl.attr import geomattr_to_db from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp # Import data into GRASS GIS grsMain = shp_to_grs(mainTable, fprop(mainTable, 'fn', forceLower=True)) grsJoin = shp_to_grs(joinTable, fprop(joinTable, 'fn', forceLower=True)) # Get distance from each feature of mainTable to the nearest feature # of the join table near(grsMain, grsJoin, nearCatCol="tocat", nearDistCol="todistance") # Export data from GRASS GIS ogrMain = grs_to_shp(grsMain, os.path.join(workGrass, 'join_loc', grsMain + '_grs.shp'), None, asMultiPart=True) ogrJoin = grs_to_shp(grsJoin, os.path.join(workGrass, 'join_loc', grsJoin + '_grs.shp'), None, asMultiPart=True) dfMain = shp_to_obj(ogrMain) dfJoin = shp_to_obj(ogrJoin) dfResult = dfMain.merge(dfJoin, how='inner', left_on='tocat', right_on='cat') dfResult.drop(["geometry_y", "cat_y"], axis=1, inplace=True) dfResult.rename(columns={"cat_x": "cat_grass"}, inplace=True) dfResult["tocat"] = dfResult["tocat"] - 1 dfResult["cat_grass"] = dfResult["cat_grass"] - 1 dfResult = df_to_geodf(dfResult, "geometry_x", epsg_code) df_to_shp(dfResult, output) return output
def bnds_to_mosaic(bands, outdata, ref_raster, loc=None): """ Satellite image To mosaic bands = { 'bnd_2' : [path_to_file, path_to_file], 'bnd_3' : [path_to_file, path_to_file], 'bnd_4' : [path_to_file, path_to_file], } """ """ Start GRASS GIS Session """ import os from gasp.pyt.oss import fprop from gasp.gt.prop.prj import get_rst_epsg from gasp.gt.wenv.grs import run_grass # Get EPSG from refRaster epsg = get_rst_epsg(ref_raster, returnIsProj=None) LOC = loc if loc else 'gr_loc' grass_base = run_grass( outdata, grassBIN='grass78', location=LOC, srs=epsg ) import grass.script as grass import grass.script.setup as gsetup gsetup.init(grass_base, outdata, LOC, 'PERMANENT') # ************************************************************************ # # GRASS MODULES # # ************************************************************************ # from gasp.gt.torst import rst_to_grs, grs_to_rst from gasp.gt.wenv.grs import rst_to_region # ************************************************************************ # # SET GRASS GIS LOCATION EXTENT # # ************************************************************************ # extRst = rst_to_grs(ref_raster, 'extent_raster') rst_to_region(extRst) # ************************************************************************ # # SEND DATA TO GRASS GIS # # ************************************************************************ # grs_bnds = {} for bnd in bands: l= [] for b in bands[bnd]: bb = rst_to_grs(b, fprop(b, 'fn')) l.append(bb) grs_bnds[bnd] = l # ************************************************************************ # # PATCH bands and export # # ************************************************************************ # for bnd in grs_bnds: mosaic_band = rseries(grs_bnds[bnd], bnd, 'maximum') grs_bnds[bnd] = grs_to_rst(mosaic_band, os.path.join( outdata, mosaic_band + '.tif' ), as_cmd=True) return grs_bnds
def raster_based(osmdata, nomenclature, refRaster, lulcRst, overwrite=None, dataStore=None, roadsAPI='POSTGIS'): """ Convert OSM Data into Land Use/Land Cover Information An raster based approach. TODO: Add detailed description """ # ************************************************************************ # # Python Modules from Reference Packages # # ************************************************************************ # import datetime import os import pandas import copy # ************************************************************************ # # Gasp dependencies # # ************************************************************************ # from gasp.pyt.oss import mkdir, fprop from gasp.gt.prop.ff import check_isRaster from gasp.gt.prop.prj import get_rst_epsg from gasp.gt.wenv.grs import run_grass if roadsAPI == 'POSTGIS': from gasp.sql.db import create_db from gasp.gql.to.osm import osm_to_psql from gasp.sds.osm2lulc.mod2 import roads_sqdb from gasp.sql.fm import dump_db from gasp.sql.db import drop_db else: from gasp.gt.toshp.osm import osm_to_sqdb from gasp.sds.osm2lulc.mod2 import grs_rst_roads from gasp.sds.osm2lulc.utils import osm_project, add_lulc_to_osmfeat, osmlulc_rsttbl from gasp.sds.osm2lulc.utils import get_ref_raster from gasp.sds.osm2lulc.mod1 import grs_rst from gasp.sds.osm2lulc.m3_4 import rst_area from gasp.sds.osm2lulc.mod5 import basic_buffer from gasp.sds.osm2lulc.mod6 import rst_pnt_to_build # ************************************************************************ # # Global Settings # # ************************************************************************ # # Check if input parameters exists! if not os.path.exists(os.path.dirname(lulcRst)): raise ValueError('{} does not exist!'.format(os.path.dirname(lulcRst))) if not os.path.exists(osmdata): raise ValueError( 'File with OSM DATA ({}) does not exist!'.format(osmdata)) if not os.path.exists(refRaster): raise ValueError( 'File with reference area ({}) does not exist!'.format(refRaster)) # Check if Nomenclature is valid nomenclature = "URBAN_ATLAS" if nomenclature != "URBAN_ATLAS" and \ nomenclature != "CORINE_LAND_COVER" and \ nomenclature == "GLOBE_LAND_30" else nomenclature time_a = datetime.datetime.now().replace(microsecond=0) workspace = os.path.join(os.path.dirname(lulcRst), 'osmtolulc') if not dataStore else dataStore # Check if workspace exists if os.path.exists(workspace): if overwrite: mkdir(workspace) else: raise ValueError('Path {} already exists'.format(workspace)) else: mkdir(workspace) # Get Ref Raster refRaster, epsg = get_ref_raster(refRaster, workspace, cellsize=2) from gasp.sds.osm2lulc import PRIORITIES, osmTableData, LEGEND __priorites = PRIORITIES[nomenclature] __legend = LEGEND[nomenclature] time_b = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Convert OSM file to SQLITE DB or to POSTGIS DB # # ************************************************************************ # if roadsAPI == 'POSTGIS': osm_db = create_db(fprop(osmdata, 'fn', forceLower=True), overwrite=True) osm_db = osm_to_psql(osmdata, osm_db) else: osm_db = osm_to_sqdb(osmdata, os.path.join(workspace, 'osm.sqlite')) time_c = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Add Lulc Classes to OSM_FEATURES by rule # # ************************************************************************ # add_lulc_to_osmfeat(osm_db, osmTableData, nomenclature, api=roadsAPI) time_d = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Transform SRS of OSM Data # # ************************************************************************ # osmTableData = osm_project( osm_db, epsg, api=roadsAPI, isGlobeLand=None if nomenclature != 'GLOBE_LAND_30' else True) time_e = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Start a GRASS GIS Session # # ************************************************************************ # grass_base = run_grass(workspace, grassBIN='grass78', location='grloc', srs=epsg) import grass.script as grass import grass.script.setup as gsetup gsetup.init(grass_base, workspace, 'grloc', 'PERMANENT') # ************************************************************************ # # IMPORT SOME GASP MODULES FOR GRASS GIS # # ************************************************************************ # from gasp.gt.torst import rst_to_grs, grs_to_rst from gasp.gt.nop.mos import rsts_to_mosaic from gasp.gt.wenv.grs import rst_to_region # ************************************************************************ # # SET GRASS GIS LOCATION EXTENT # # ************************************************************************ # extRst = rst_to_grs(refRaster, 'extent_raster') rst_to_region(extRst) time_f = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # MapResults # mergeOut = {} # ************************************************************************ # # ************************************************************************ # # 1 - Selection Rule # # ************************************************************************ # """ selOut = { cls_code : rst_name, ... } """ selOut, timeCheck1 = grs_rst(osm_db, osmTableData['polygons'], api=roadsAPI) for cls in selOut: mergeOut[cls] = [selOut[cls]] time_g = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # 2 - Get Information About Roads Location # # ************************************************************************ # """ roads = { cls_code : rst_name, ... } """ if roadsAPI != 'POSTGIS': roads, timeCheck2 = grs_rst_roads( osm_db, osmTableData['lines'], osmTableData['polygons'], workspace, 1221 if nomenclature != "GLOBE_LAND_30" else 801) else: roadCls = 1221 if nomenclature != "GLOBE_LAND_30" else 801 roads, timeCheck2 = roads_sqdb(osm_db, osmTableData['lines'], osmTableData['polygons'], apidb='POSTGIS', asRst=roadCls) roads = {roadCls: roads} for cls in roads: if cls not in mergeOut: mergeOut[cls] = [roads[cls]] else: mergeOut[cls].append(roads[cls]) time_h = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # 3 - Area Upper than # # ************************************************************************ # """ auOut = { cls_code : rst_name, ... } """ if nomenclature != 'GLOBE_LAND_30': auOut, timeCheck3 = rst_area(osm_db, osmTableData['polygons'], UPPER=True, api=roadsAPI) for cls in auOut: if cls not in mergeOut: mergeOut[cls] = [auOut[cls]] else: mergeOut[cls].append(auOut[cls]) time_l = datetime.datetime.now().replace(microsecond=0) else: timeCheck3 = None time_l = None # ************************************************************************ # # 4 - Area Lower than # # ************************************************************************ # """ alOut = { cls_code : rst_name, ... } """ if nomenclature != 'GLOBE_LAND_30': alOut, timeCheck4 = rst_area(osm_db, osmTableData['polygons'], UPPER=None, api=roadsAPI) for cls in alOut: if cls not in mergeOut: mergeOut[cls] = [alOut[cls]] else: mergeOut[cls].append(alOut[cls]) time_j = datetime.datetime.now().replace(microsecond=0) else: timeCheck4 = None time_j = None # ************************************************************************ # # 5 - Get data from lines table (railway | waterway) # # ************************************************************************ # """ bfOut = { cls_code : rst_name, ... } """ bfOut, timeCheck5 = basic_buffer(osm_db, osmTableData['lines'], workspace, apidb=roadsAPI) for cls in bfOut: if cls not in mergeOut: mergeOut[cls] = [bfOut[cls]] else: mergeOut[cls].append(bfOut[cls]) time_m = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # 7 - Assign untagged Buildings to tags # # ************************************************************************ # if nomenclature != "GLOBE_LAND_30": buildsOut, timeCheck7 = rst_pnt_to_build(osm_db, osmTableData['points'], osmTableData['polygons'], api_db=roadsAPI) for cls in buildsOut: if cls not in mergeOut: mergeOut[cls] = buildsOut[cls] else: mergeOut[cls] += buildsOut[cls] time_n = datetime.datetime.now().replace(microsecond=0) else: timeCheck7 = None time_n = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Produce LULC Map # # ************************************************************************ # """ Merge all results for one cls into one raster mergeOut = { cls_code : [rst_name, rst_name, ...], ... } into mergeOut = { cls_code : patched_raster, ... } """ for cls in mergeOut: if len(mergeOut[cls]) == 1: mergeOut[cls] = mergeOut[cls][0] else: mergeOut[cls] = rsts_to_mosaic(mergeOut[cls], 'mosaic_{}'.format(str(cls)), api="grass") time_o = datetime.datetime.now().replace(microsecond=0) """ Merge all Class Raster using a priority rule """ __priorities = PRIORITIES[nomenclature] lst_rst = [] for cls in __priorities: if cls not in mergeOut: continue else: lst_rst.append(mergeOut[cls]) outGrs = rsts_to_mosaic(lst_rst, os.path.splitext(os.path.basename(lulcRst))[0], api="grass") time_p = datetime.datetime.now().replace(microsecond=0) # Ceck if lulc Rst has an valid format outIsRst = check_isRaster(lulcRst) if not outIsRst: from gasp.pyt.oss import fprop lulcRst = os.path.join(os.path.dirname(lulcRst), fprop(lulcRst, 'fn') + '.tif') grs_to_rst(outGrs, lulcRst, as_cmd=True) osmlulc_rsttbl( nomenclature, os.path.join(os.path.dirname(lulcRst), os.path.basename(lulcRst) + '.vat.dbf')) time_q = datetime.datetime.now().replace(microsecond=0) # Dump Database if PostGIS was used # Drop Database if PostGIS was used if roadsAPI == 'POSTGIS': dump_db(osm_db, os.path.join(workspace, osm_db + '.sql'), api='psql') drop_db(osm_db) return lulcRst, { 0: ('set_settings', time_b - time_a), 1: ('osm_to_sqdb', time_c - time_b), 2: ('cls_in_sqdb', time_d - time_c), 3: ('proj_data', time_e - time_d), 4: ('set_grass', time_f - time_e), 5: ('rule_1', time_g - time_f, timeCheck1), 6: ('rule_2', time_h - time_g, timeCheck2), 7: None if not timeCheck3 else ('rule_3', time_l - time_h, timeCheck3), 8: None if not timeCheck4 else ('rule_4', time_j - time_l, timeCheck4), 9: ('rule_5', time_m - time_j if timeCheck4 else time_m - time_h, timeCheck5), 10: None if not timeCheck7 else ('rule_7', time_n - time_m, timeCheck7), 11: ('merge_rst', time_o - time_n), 12: ('priority_rule', time_p - time_o), 13: ('export_rst', time_q - time_p) }
def vector_based(osmdata, nomenclature, refRaster, lulcShp, overwrite=None, dataStore=None, RoadsAPI='POSTGIS'): """ Convert OSM Data into Land Use/Land Cover Information An vector based approach. TODO: Add a detailed description. RoadsAPI Options: * GRASS * SQLITE * POSTGIS """ # ************************************************************************ # # Python Modules from Reference Packages # # ************************************************************************ # import datetime import os import copy # ************************************************************************ # # GASP dependencies # # ************************************************************************ # from gasp.pyt.oss import fprop, mkdir from gasp.gt.wenv.grs import run_grass if RoadsAPI == 'POSTGIS': from gasp.sql.db import create_db from gasp.gql.to.osm import osm_to_psql from gasp.sql.db import drop_db from gasp.sql.fm import dump_db else: from gasp.gt.toshp.osm import osm_to_sqdb from gasp.sds.osm2lulc.utils import osm_project, add_lulc_to_osmfeat, get_ref_raster from gasp.gt.toshp.mtos import shps_to_shp from gasp.sds.osm2lulc.mod1 import grs_vector if RoadsAPI == 'SQLITE' or RoadsAPI == 'POSTGIS': from gasp.sds.osm2lulc.mod2 import roads_sqdb else: from gasp.sds.osm2lulc.mod2 import grs_vec_roads from gasp.sds.osm2lulc.m3_4 import grs_vect_selbyarea from gasp.sds.osm2lulc.mod5 import grs_vect_bbuffer from gasp.sds.osm2lulc.mod6 import vector_assign_pntags_to_build from gasp.gt.toshp.mtos import same_attr_to_shp from gasp.gt.prj import def_prj # ************************************************************************ # # Global Settings # # ************************************************************************ # # Check if input parameters exists! if not os.path.exists(os.path.dirname(lulcShp)): raise ValueError('{} does not exist!'.format(os.path.dirname(lulcShp))) if not os.path.exists(osmdata): raise ValueError( 'File with OSM DATA ({}) does not exist!'.format(osmdata)) if not os.path.exists(refRaster): raise ValueError( 'File with reference area ({}) does not exist!'.format(refRaster)) # Check if Nomenclature is valid nomenclature = "URBAN_ATLAS" if nomenclature != "URBAN_ATLAS" and \ nomenclature != "CORINE_LAND_COVER" and \ nomenclature == "GLOBE_LAND_30" else nomenclature time_a = datetime.datetime.now().replace(microsecond=0) # Create workspace for temporary files workspace = os.path.join(os.path.dirname(lulcShp), 'osmtolulc') if not dataStore else dataStore # Check if workspace exists if os.path.exists(workspace): if overwrite: mkdir(workspace) else: raise ValueError('Path {} already exists'.format(workspace)) else: mkdir(workspace) # Get Reference Raster refRaster, epsg = get_ref_raster(refRaster, workspace, cellsize=10) from gasp.sds.osm2lulc import osmTableData, PRIORITIES, LEGEND __priorities = PRIORITIES[nomenclature] __legend = LEGEND[nomenclature] time_b = datetime.datetime.now().replace(microsecond=0) if RoadsAPI != 'POSTGIS': # ******************************************************************** # # Convert OSM file to SQLITE DB # # ******************************************************************** # osm_db = osm_to_sqdb(osmdata, os.path.join(workspace, 'osm.sqlite')) else: # Convert OSM file to POSTGRESQL DB # osm_db = create_db(fprop(osmdata, 'fn', forceLower=True), overwrite=True) osm_db = osm_to_psql(osmdata, osm_db) time_c = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Add Lulc Classes to OSM_FEATURES by rule # # ************************************************************************ # add_lulc_to_osmfeat(osm_db, osmTableData, nomenclature, api='SQLITE' if RoadsAPI != 'POSTGIS' else RoadsAPI) time_d = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Transform SRS of OSM Data # # ************************************************************************ # osmTableData = osm_project( osm_db, epsg, api='SQLITE' if RoadsAPI != 'POSTGIS' else RoadsAPI, isGlobeLand=None if nomenclature != 'GLOBE_LAND_30' else True) time_e = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Start a GRASS GIS Session # # ************************************************************************ # grass_base = run_grass(workspace, grassBIN='grass78', location='grloc', srs=epsg) #import grass.script as grass import grass.script.setup as gsetup gsetup.init(grass_base, workspace, 'grloc', 'PERMANENT') # ************************************************************************ # # IMPORT SOME GASP MODULES FOR GRASS GIS # # ************************************************************************ # from gasp.gt.gop.ovlay import erase from gasp.gt.wenv.grs import rst_to_region from gasp.gt.gop.genze import dissolve from gasp.gt.tbl.grs import add_and_update, reset_table, update_table from gasp.gt.tbl.fld import add_fields from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.torst import rst_to_grs # ************************************************************************ # # SET GRASS GIS LOCATION EXTENT # # ************************************************************************ # extRst = rst_to_grs(refRaster, 'extent_raster') rst_to_region(extRst) time_f = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # MapResults # # ************************************************************************ # osmShps = [] # ************************************************************************ # # 1 - Selection Rule # # ************************************************************************ # ruleOneShp, timeCheck1 = grs_vector(osm_db, osmTableData['polygons'], apidb=RoadsAPI) osmShps.append(ruleOneShp) time_g = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # 2 - Get Information About Roads Location # # ************************************************************************ # ruleRowShp, timeCheck2 = roads_sqdb( osm_db, osmTableData['lines'], osmTableData['polygons'], apidb=RoadsAPI ) if RoadsAPI == 'SQLITE' or RoadsAPI == 'POSTGIS' else grs_vec_roads( osm_db, osmTableData['lines'], osmTableData['polygons']) osmShps.append(ruleRowShp) time_h = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # 3 - Area Upper than # # ************************************************************************ # if nomenclature != "GLOBE_LAND_30": ruleThreeShp, timeCheck3 = grs_vect_selbyarea(osm_db, osmTableData['polygons'], UPPER=True, apidb=RoadsAPI) osmShps.append(ruleThreeShp) time_l = datetime.datetime.now().replace(microsecond=0) else: timeCheck3 = None time_l = None # ************************************************************************ # # 4 - Area Lower than # # ************************************************************************ # if nomenclature != "GLOBE_LAND_30": ruleFourShp, timeCheck4 = grs_vect_selbyarea(osm_db, osmTableData['polygons'], UPPER=False, apidb=RoadsAPI) osmShps.append(ruleFourShp) time_j = datetime.datetime.now().replace(microsecond=0) else: timeCheck4 = None time_j = None # ************************************************************************ # # 5 - Get data from lines table (railway | waterway) # # ************************************************************************ # ruleFiveShp, timeCheck5 = grs_vect_bbuffer(osm_db, osmTableData["lines"], api_db=RoadsAPI) osmShps.append(ruleFiveShp) time_m = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # 7 - Assign untagged Buildings to tags # # ************************************************************************ # if nomenclature != "GLOBE_LAND_30": ruleSeven11, ruleSeven12, timeCheck7 = vector_assign_pntags_to_build( osm_db, osmTableData['points'], osmTableData['polygons'], apidb=RoadsAPI) if ruleSeven11: osmShps.append(ruleSeven11) if ruleSeven12: osmShps.append(ruleSeven12) time_n = datetime.datetime.now().replace(microsecond=0) else: timeCheck7 = None time_n = datetime.datetime.now().replace(microsecond=0) # ************************************************************************ # # Produce LULC Map # # ************************************************************************ # """ Get Shps with all geometries related with one class - One Shape for Classe """ _osmShps = [] for i in range(len(osmShps)): if not osmShps[i]: continue _osmShps.append( grs_to_shp(osmShps[i], os.path.join(workspace, osmShps[i] + '.shp'), 'auto', lyrN=1, asCMD=True, asMultiPart=None)) for shp in _osmShps: def_prj(os.path.splitext(shp)[0] + '.prj', epsg=epsg, api='epsgio') _osmShps = same_attr_to_shp(_osmShps, "cat", workspace, "osm_", resultDict=True) del osmShps time_o = datetime.datetime.now().replace(microsecond=0) """ Merge all Classes into one feature class using a priority rule """ osmShps = {} for cls in _osmShps: if cls == '1': osmShps[1221] = shp_to_grs(_osmShps[cls], "osm_1221", asCMD=True) else: osmShps[int(cls)] = shp_to_grs(_osmShps[cls], "osm_" + cls, asCMD=True) # Erase overlapping areas by priority osmNameRef = copy.deepcopy(osmShps) for e in range(len(__priorities)): if e + 1 == len(__priorities): break if __priorities[e] not in osmShps: continue else: for i in range(e + 1, len(__priorities)): if __priorities[i] not in osmShps: continue else: osmShps[__priorities[i]] = erase( osmShps[__priorities[i]], osmShps[__priorities[e]], "{}_{}".format(osmNameRef[__priorities[i]], e), notTbl=True, api='pygrass') time_p = datetime.datetime.now().replace(microsecond=0) # Export all classes lst_merge = [] a = None for i in range(len(__priorities)): if __priorities[i] not in osmShps: continue if not a: reset_table(osmShps[__priorities[i]], { 'cls': 'varchar(5)', 'leg': 'varchar(75)' }, { 'cls': str(__priorities[i]), 'leg': str(__legend[__priorities[i]]) }) a = 1 else: add_and_update(osmShps[__priorities[i]], {'cls': 'varchar(5)'}, {'cls': str(__priorities[i])}) ds = dissolve(osmShps[__priorities[i]], 'dl_{}'.format(str(__priorities[i])), 'cls', api="grass") add_fields(ds, {'leg': 'varchar(75)'}, api="grass") update_table(ds, 'leg', str(__legend[__priorities[i]]), 'leg is null') lst_merge.append( grs_to_shp(ds, os.path.join(workspace, "lulc_{}.shp".format( str(__priorities[i]))), 'auto', lyrN=1, asCMD=True, asMultiPart=None)) time_q = datetime.datetime.now().replace(microsecond=0) if fprop(lulcShp, 'ff') != '.shp': lulcShp = os.path.join(os.path.dirname(lulcShp), fprop(lulcShp, 'fn') + '.shp') shps_to_shp(lst_merge, lulcShp, api='pandas') # Check if prj of lulcShp exists and create it if necessary prj_ff = os.path.splitext(lulcShp)[0] + '.prj' if not os.path.exists(prj_ff): def_prj(prj_ff, epsg=epsg, api='epsgio') time_r = datetime.datetime.now().replace(microsecond=0) # Dump Database if PostGIS was used # Drop Database if PostGIS was used if RoadsAPI == 'POSTGIS': dump_db(osm_db, os.path.join(workspace, osm_db + '.sql'), api='psql') drop_db(osm_db) return lulcShp, { 0: ('set_settings', time_b - time_a), 1: ('osm_to_sqdb', time_c - time_b), 2: ('cls_in_sqdb', time_d - time_c), 3: ('proj_data', time_e - time_d), 4: ('set_grass', time_f - time_e), 5: ('rule_1', time_g - time_f, timeCheck1), 6: ('rule_2', time_h - time_g, timeCheck2), 7: None if not timeCheck3 else ('rule_3', time_l - time_h, timeCheck3), 8: None if not timeCheck4 else ('rule_4', time_j - time_l, timeCheck4), 9: ('rule_5', time_m - time_j if timeCheck4 else time_m - time_h, timeCheck5), 10: None if not timeCheck7 else ('rule_7', time_n - time_m, timeCheck7), 11: ('disj_cls', time_o - time_n), 12: ('priority_rule', time_p - time_o), 13: ('export_cls', time_q - time_p), 14: ('merge_cls', time_r - time_q) }
def snap_points_to_near_line(lineShp, pointShp, epsg, workGrass, outPoints, location='overlap_pnts', api='grass', movesShp=None): """ Move points to overlap near line API's Available: * grass; * saga. """ if api == 'grass': """ Uses GRASS GIS to find near lines. """ import os import numpy from geopandas import GeoDataFrame from gasp.pyt.oss import fprop from gasp.gt.wenv.grs import run_grass from gasp.gt.fmshp import shp_to_obj from gasp.gt.toshp import df_to_shp # Create GRASS GIS Location grassBase = run_grass(workGrass, location=location, srs=epsg) import grass.script as grass import grass.script.setup as gsetup gsetup.init(grassBase, workGrass, location, 'PERMANENT') # Import some GRASS GIS tools from gasp.gt.prox import grs_near as near from gasp.gt.tbl.attr import geomattr_to_db from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp # Import data into GRASS GIS grsLines = shp_to_grs(lineShp, fprop(lineShp, 'fn', forceLower=True)) grsPoint = shp_to_grs(pointShp, fprop(pointShp, 'fn', forceLower=True)) # Get distance from points to near line near(grsPoint, grsLines, nearCatCol="tocat", nearDistCol="todistance") # Get coord of start/end points of polylines geomattr_to_db(grsLines, ['sta_pnt_x', 'sta_pnt_y'], 'start', 'line') geomattr_to_db(grsLines, ['end_pnt_x', 'end_pnt_y'], 'end', 'line') # Export data from GRASS GIS ogrPoint = grs_to_shp( grsPoint, os.path.join(workGrass, grsPoint + '.shp', 'point', asMultiPart=True)) ogrLine = grs_to_shp( grsLines, os.path.join(workGrass, grsLines + '.shp', 'point', asMultiPart=True)) # Points to GeoDataFrame pntDf = shp_to_obj(ogrPoint) # Lines to GeoDataFrame lnhDf = shp_to_obj(ogrLine) # Erase unecessary fields pntDf.drop(["todistance"], axis=1, inplace=True) lnhDf.drop([ c for c in lnhDf.columns.values if c != 'geometry' and c != 'cat' and c != 'sta_pnt_x' and c != 'sta_pnt_y' and c != 'end_pnt_x' and c != 'end_pnt_y' ], axis=1, inplace=True) # Join Geometries - Table with Point Geometry and Geometry of the # nearest line resultDf = pntDf.merge(lnhDf, how='inner', left_on='tocat', right_on='cat') # Move points resultDf['geometry'] = [ geoms[0].interpolate(geoms[0].project(geoms[1])) for geoms in zip(resultDf.geometry_y, resultDf.geometry_x) ] resultDf.drop(["geometry_x", "geometry_y", "cat_x", "cat_y"], axis=1, inplace=True) resultDf = GeoDataFrame(resultDf, crs={"init": 'epsg:{}'.format(epsg)}, geometry="geometry") # Check if points are equal to any start/end points resultDf["x"] = resultDf.geometry.x resultDf["y"] = resultDf.geometry.y resultDf["check"] = numpy.where( (resultDf["x"] == resultDf["sta_pnt_x"]) & (resultDf["y"] == resultDf["sta_pnt_y"]), 1, 0) resultDf["check"] = numpy.where( (resultDf["x"] == resultDf["end_pnt_x"]) & (resultDf["y"] == resultDf["end_pnt_y"]), 1, 0) # To file df_to_shp(resultDf, outPoints) elif api == 'saga': """ Snap Points to Lines using SAGA GIS """ from gasp import exec_cmd cmd = ("saga_cmd shapes_points 19 -INPUT {pnt} -SNAP {lnh} " "-OUTPUT {out}{mv}").format( pnt=pointShp, lnh=lineShp, out=outPoints, mv="" if not movesShp else " -MOVES {}".format(movesShp)) outcmd = exec_cmd(cmd) else: raise ValueError("{} is not available!".format(api)) return outPoints
def lnh_to_polygons(inShp, outShp, api='saga', db=None): """ Line to Polygons API's Available: * saga; * grass; * pygrass; * psql; """ if api == 'saga': """ http://www.saga-gis.org/saga_tool_doc/7.0.0/shapes_polygons_3.html Converts lines to polygons. Line arcs are closed to polygons simply by connecting the last point with the first. Optionally parts of polylines can be merged into one polygon optionally. """ from gasp import exec_cmd rcmd = exec_cmd(("saga_cmd shapes_polygons 3 -POLYGONS {} " "LINES {} -SINGLE 1 -MERGE 1").format(outShp, inShp)) elif api == 'grass' or api == 'pygrass': # Do it using GRASS GIS import os from gasp.gt.wenv.grs import run_grass from gasp.pyt.oss import fprop # Create GRASS GIS Session wk = os.path.dirname(outShp) lo = fprop(outShp, 'fn', forceLower=True) gs = run_grass(wk, lo, srs=inShp) import grass.script as grass import grass.script.setup as gsetup gsetup.init(gs, wk, lo, 'PERMANENT') # Import Packages from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.toshp.cgeo import line_to_polyline from gasp.gt.toshp.cgeo import geomtype_to_geomtype from gasp.gt.toshp.cgeo import boundary_to_areas # Send data to GRASS GIS lnh_shp = shp_to_grs(inShp, fprop(inShp, 'fn', forceLower=True), asCMD=True if api == 'grass' else None) # Build Polylines pol_lnh = line_to_polyline(lnh_shp, "polylines", asCmd=True if api == 'grass' else None) # Polyline to boundary bound = geomtype_to_geomtype(pol_lnh, 'bound_shp', 'line', 'boundary', cmd=True if api == 'grass' else None) # Boundary to Area areas_shp = boundary_to_areas(bound, lo, useCMD=True if api == 'grass' else None) # Export data outShp = grs_to_shp(areas_shp, outShp, 'area', asCMD=True if api == 'grass' else None) elif api == 'psql': """ Do it using PostGIS """ from gasp.pyt.oss import fprop from gasp.sql.db import create_db from gasp.gql.to import shp_to_psql from gasp.gt.toshp.db import dbtbl_to_shp from gasp.gql.cnv import lnh_to_polg from gasp.gt.prop.prj import get_epsg_shp # Create DB if not db: db = create_db(fprop(inShp, 'fn', forceLower=True), api='psql') else: from gasp.sql.i import db_exists isDB = db_exists(db) if not isDB: create_db(db, api='psql') # Send data to DB in_tbl = shp_to_psql(db, inShp, api="shp2pgsql") # Get Result result = lnh_to_polg(db, in_tbl, fprop(outShp, 'fn', forceLower=True)) # Export Result outshp = dbtbl_to_shp(db, result, "geom", outShp, api='psql', epsg=get_epsg_shp(inShp)) else: raise ValueError("API {} is not available".format(api)) return outShp
def check_shape_diff(SHAPES_TO_COMPARE, OUT_FOLDER, REPORT, DB, GRASS_REGION_TEMPLATE): """ Script to check differences between pairs of Feature Classes Suponha que temos diversas Feature Classes (FC) e que cada uma delas possui um determinado atributo; imagine tambem que, considerando todos os pares possiveis entre estas FC, se pretende comparar as diferencas na distribuicao dos valores desse atributo para cada par. * Dependencias: - GRASS; - PostgreSQL; - PostGIS. """ import datetime import os import pandas from gasp.sql.fm import q_to_obj from gasp.to import db_to_tbl from gasp.sql.to import df_to_db from gasp.gt.toshp.cff import shp_to_shp from gasp.gt.toshp.db import dbtbl_to_shp from gasp.gt.toshp.rst import rst_to_polyg from gasp.gql.to import shp_to_psql from gasp.gql.tomtx import tbl_to_area_mtx from gasp.gt.prop.ff import check_isRaster from gasp.pyt.oss import fprop from gasp.sql.db import create_db from gasp.sql.tbl import tbls_to_tbl from gasp.sql.to import q_to_ntbl from gasp.gql.cln import fix_geom from gasp.to import db_to_tbl # Check if folder exists, if not create it if not os.path.exists(OUT_FOLDER): from gasp.pyt.oss import mkdir mkdir(OUT_FOLDER, overwrite=None) else: raise ValueError('{} already exists!'.format(OUT_FOLDER)) from gasp.gt.wenv.grs import run_grass gbase = run_grass(OUT_FOLDER, grassBIN='grass78', location='shpdif', srs=GRASS_REGION_TEMPLATE) import grass.script as grass import grass.script.setup as gsetup gsetup.init(gbase, OUT_FOLDER, 'shpdif', 'PERMANENT') from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.torst import rst_to_grs from gasp.gt.tbl.fld import rn_cols # Convert to SHAPE if file is Raster i = 0 _SHP_TO_COMPARE = {} for s in SHAPES_TO_COMPARE: isRaster = check_isRaster(s) if isRaster: # To GRASS rstName = fprop(s, 'fn') inRst = rst_to_grs(s, "rst_" + rstName, as_cmd=True) # To Vector d = rst_to_polyg(inRst, rstName, rstColumn="lulc_{}".format(i), gisApi="grass") # Export Shapefile shp = grs_to_shp(d, os.path.join(OUT_FOLDER, d + '.shp'), "area") _SHP_TO_COMPARE[shp] = "lulc_{}".format(i) else: # To GRASS grsV = shp_to_grs(s, fprop(s, 'fn'), asCMD=True) # Change name of column with comparing value ncol = "lulc_{}".format(str(i)) rn_cols(grsV, {SHAPES_TO_COMPARE[s]: "lulc_{}".format(str(i))}, api="grass") # Export shp = grs_to_shp(grsV, os.path.join(OUT_FOLDER, grsV + '_rn.shp'), "area") _SHP_TO_COMPARE[shp] = "lulc_{}".format(str(i)) i += 1 SHAPES_TO_COMPARE = _SHP_TO_COMPARE __SHAPES_TO_COMPARE = SHAPES_TO_COMPARE # Create database create_db(DB, api='psql') """ Union SHAPEs """ UNION_SHAPE = {} FIX_GEOM = {} SHPS = list(__SHAPES_TO_COMPARE.keys()) for i in range(len(SHPS)): for e in range(i + 1, len(SHPS)): # Optimized Union print("Union between {} and {}".format(SHPS[i], SHPS[e])) time_a = datetime.datetime.now().replace(microsecond=0) __unShp = optimized_union_anls( SHPS[i], SHPS[e], os.path.join(OUT_FOLDER, "un_{}_{}.shp".format(i, e)), GRASS_REGION_TEMPLATE, os.path.join(OUT_FOLDER, "work_{}_{}".format(i, e)), multiProcess=True) time_b = datetime.datetime.now().replace(microsecond=0) print(time_b - time_a) # Rename cols unShp = rn_cols( __unShp, { "a_" + __SHAPES_TO_COMPARE[SHPS[i]]: __SHAPES_TO_COMPARE[SHPS[i]], "b_" + __SHAPES_TO_COMPARE[SHPS[e]]: __SHAPES_TO_COMPARE[SHPS[e]] }) UNION_SHAPE[(SHPS[i], SHPS[e])] = unShp # Send data to postgresql SYNTH_TBL = {} for uShp in UNION_SHAPE: # Send data to PostgreSQL union_tbl = shp_to_psql(DB, UNION_SHAPE[uShp], api='shp2pgsql') # Produce table with % of area equal in both maps areaMapTbl = q_to_ntbl( DB, "{}_syn".format(union_tbl), ("SELECT CAST('{lulc_1}' AS text) AS lulc_1, " "CAST('{lulc_2}' AS text) AS lulc_2, " "round(" "CAST(SUM(g_area) / 1000000 AS numeric), 4" ") AS agree_area, round(" "CAST((SUM(g_area) / MIN(total_area)) * 100 AS numeric), 4" ") AS agree_percentage, " "round(" "CAST(MIN(total_area) / 1000000 AS numeric), 4" ") AS total_area FROM (" "SELECT {map1_cls}, {map2_cls}, ST_Area(geom) AS g_area, " "CASE " "WHEN {map1_cls} = {map2_cls} " "THEN 1 ELSE 0 " "END AS isthesame, total_area FROM {tbl}, (" "SELECT SUM(ST_Area(geom)) AS total_area FROM {tbl}" ") AS foo2" ") AS foo WHERE isthesame = 1 " "GROUP BY isthesame").format( lulc_1=fprop(uShp[0], 'fn'), lulc_2=fprop(uShp[1], 'fn'), map1_cls=__SHAPES_TO_COMPARE[uShp[0]], map2_cls=__SHAPES_TO_COMPARE[uShp[1]], tbl=union_tbl), api='psql') # Produce confusion matrix for the pair in comparison matrixTbl = tbl_to_area_mtx(DB, union_tbl, __SHAPES_TO_COMPARE[uShp[0]], __SHAPES_TO_COMPARE[uShp[1]], union_tbl + '_mtx') SYNTH_TBL[uShp] = {"TOTAL": areaMapTbl, "MATRIX": matrixTbl} # UNION ALL TOTAL TABLES total_table = tbls_to_tbl(DB, [SYNTH_TBL[k]["TOTAL"] for k in SYNTH_TBL], 'total_table') # Create table with % of agreement between each pair of maps mapsNames = q_to_obj( DB, ("SELECT lulc FROM (" "SELECT lulc_1 AS lulc FROM {tbl} GROUP BY lulc_1 " "UNION ALL " "SELECT lulc_2 AS lulc FROM {tbl} GROUP BY lulc_2" ") AS lu GROUP BY lulc ORDER BY lulc").format(tbl=total_table), db_api='psql').lulc.tolist() FLDS_TO_PIVOT = ["agree_percentage", "total_area"] Q = ("SELECT * FROM crosstab('" "SELECT CASE " "WHEN foo.lulc_1 IS NOT NULL THEN foo.lulc_1 ELSE jtbl.tmp1 " "END AS lulc_1, CASE " "WHEN foo.lulc_2 IS NOT NULL THEN foo.lulc_2 ELSE jtbl.tmp2 " "END AS lulc_2, CASE " "WHEN foo.{valCol} IS NOT NULL THEN foo.{valCol} ELSE 0 " "END AS agree_percentage FROM (" "SELECT lulc_1, lulc_2, {valCol} FROM {tbl} UNION ALL " "SELECT lulc_1, lulc_2, {valCol} FROM (" "SELECT lulc_1 AS lulc_2, lulc_2 AS lulc_1, {valCol} " "FROM {tbl}" ") AS tst" ") AS foo FULL JOIN (" "SELECT lulc_1 AS tmp1, lulc_2 AS tmp2 FROM (" "SELECT lulc_1 AS lulc_1 FROM {tbl} GROUP BY lulc_1 " "UNION ALL " "SELECT lulc_2 AS lulc_1 FROM {tbl} GROUP BY lulc_2" ") AS tst_1, (" "SELECT lulc_1 AS lulc_2 FROM {tbl} GROUP BY lulc_1 " "UNION ALL " "SELECT lulc_2 AS lulc_2 FROM {tbl} GROUP BY lulc_2" ") AS tst_2 WHERE lulc_1 = lulc_2 GROUP BY lulc_1, lulc_2" ") AS jtbl ON foo.lulc_1 = jtbl.tmp1 AND foo.lulc_2 = jtbl.tmp2 " "ORDER BY lulc_1, lulc_2" "') AS ct(" "lulc_map text, {crossCols}" ")") TOTAL_AGREE_TABLE = None TOTAL_AREA_TABLE = None for f in FLDS_TO_PIVOT: if not TOTAL_AGREE_TABLE: TOTAL_AGREE_TABLE = q_to_ntbl( DB, "agreement_table", Q.format(tbl=total_table, valCol=f, crossCols=", ".join([ "{} numeric".format(map_) for map_ in mapsNames ])), api='psql') else: TOTAL_AREA_TABLE = q_to_ntbl(DB, "area_table", Q.format(tbl=total_table, valCol=f, crossCols=", ".join([ "{} numeric".format(map_) for map_ in mapsNames ])), api='psql') # Union Mapping UNION_MAPPING = pandas.DataFrame( [[k[0], k[1], fprop(UNION_SHAPE[k], 'fn')] for k in UNION_SHAPE], columns=['shp_a', 'shp_b', 'union_shp']) UNION_MAPPING = df_to_db(DB, UNION_MAPPING, 'union_map', api='psql') # Export Results TABLES = [UNION_MAPPING, TOTAL_AGREE_TABLE, TOTAL_AREA_TABLE ] + [SYNTH_TBL[x]["MATRIX"] for x in SYNTH_TBL] SHEETS = ["union_map", "agreement_percentage", "area_with_data_km"] + [ "{}_{}".format(fprop(x[0], 'fn')[:15], fprop(x[1], 'fn')[:15]) for x in SYNTH_TBL ] db_to_tbl(DB, ["SELECT * FROM {}".format(x) for x in TABLES], REPORT, sheetsNames=SHEETS, dbAPI='psql') return REPORT
def optimized_union_anls(lyr_a, lyr_b, outShp, ref_boundary, workspace=None, multiProcess=None): """ Optimized Union Analysis Goal: optimize v.overlay performance for Union operations """ import os from gasp.pyt.oss import fprop, lst_ff from gasp.pyt.oss import cpu_cores from gasp.gt.sample import create_fishnet from gasp.gt.wenv.grs import run_grass from gasp.gt.toshp import eachfeat_to_newshp from gasp.gt.toshp.mtos import shps_to_shp from gasp.gt.attr import split_shp_by_attr from gasp.gt.torst import shpext_to_rst from gasp.gt.prop.ext import get_ext if workspace: if not os.path.exists(workspace): from gasp.pyt.oss import mkdir mkdir(workspace, overwrite=True) else: from gasp.pyt.oss import mkdir workspace = mkdir(os.path.join(os.path.dirname(outShp), "union_work")) # Create Fishnet ncpu = cpu_cores() if ncpu == 12: nrow = 4 ncol = 3 elif ncpu == 8: nrow = 4 ncol = 2 else: nrow = 2 ncol = 2 ext = get_ext(ref_boundary) width = (ext[1] - ext[0]) / ncol height = (ext[3] - ext[2]) / nrow gridShp = create_fishnet(ref_boundary, os.path.join(workspace, 'ref_grid.shp'), width, height, xy_row_col=None) # Split Fishnet in several files cellsShp = eachfeat_to_newshp(gridShp, workspace) if not multiProcess: # INIT GRASS GIS Session grsbase = run_grass(workspace, location="grs_loc", srs=ref_boundary) import grass.script.setup as gsetup gsetup.init(grsbase, workspace, "grs_loc", 'PERMANENT') # Add data to GRASS GIS from gasp.gt.toshp.cff import shp_to_grs cellsShp = [ shp_to_grs(shp, fprop(shp, 'fn'), asCMD=True) for shp in cellsShp ] LYR_A = shp_to_grs(lyr_a, fprop(lyr_a, 'fn'), asCMD=True) LYR_B = shp_to_grs(lyr_b, fprop(lyr_b, 'fn'), asCMD=True) # Clip Layers A and B for each CELL in fishnet LYRS_A = [ clip(LYR_A, cellsShp[x], LYR_A + "_" + str(x), api_gis="grass") for x in range(len(cellsShp)) ] LYRS_B = [ clip(LYR_B, cellsShp[x], LYR_B + "_" + str(x), api_gis="grass") for x in range(len(cellsShp)) ] # Union SHPS UNION_SHP = [ union(LYRS_A[i], LYRS_B[i], "un_{}".format(i), api_gis="grass") for i in range(len(cellsShp)) ] # Export Data from gasp.gt.toshp.cff import grs_to_shp _UNION_SHP = [ grs_to_shp(shp, os.path.join(workspace, shp + ".shp"), "area") for shp in UNION_SHP ] else: def clip_and_union(la, lb, cell, work, proc, output): ref_rst = shpext_to_rst(cell, os.path.join(os.path.dirname(cell), fprop(cell, 'fn') + '.tif'), cellsize=10) # Start GRASS GIS Session loc = "proc_" + str(proc) grsbase = run_grass(work, location=loc, srs=ref_rst) import grass.script.setup as gsetup gsetup.init(grsbase, work, loc, 'PERMANENT') # Import GRASS GIS modules from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.prop.feat import feat_count # Add data to GRASS a = shp_to_grs(la, fprop(la, 'fn'), filterByReg=True, asCMD=True) b = shp_to_grs(lb, fprop(lb, 'fn'), filterByReg=True, asCMD=True) if not feat_count(a, gisApi="grass", work=work, loc=loc): return if not feat_count(b, gisApi="grass", work=work, loc=loc): return # Clip a_clip = clip(a, None, "{}_clip".format(a), api_gis="grass", clip_by_region=True) b_clip = clip(b, None, "{}_clip".format(b), api_gis="grass", clip_by_region=True) # Union u_shp = union(a_clip, b_clip, "un_{}".format(fprop(cell, 'fn')), api_gis="grass") # Export o = grs_to_shp(u_shp, output, "area") import multiprocessing thrds = [ multiprocessing.Process( target=clip_and_union, name="th-{}".format(i), args=(lyr_a, lyr_b, cellsShp[i], os.path.join(workspace, "th_{}".format(i)), i, os.path.join(workspace, "uniao_{}.shp".format(i)))) for i in range(len(cellsShp)) ] for t in thrds: t.start() for t in thrds: t.join() ff_shp = lst_ff(workspace, file_format='.shp') _UNION_SHP = [] for i in range(len(cellsShp)): p = os.path.join(workspace, "uniao_{}.shp".format(i)) if p in ff_shp: _UNION_SHP.append(p) else: continue # Merge all union into the same layer MERGED_SHP = shps_to_shp(_UNION_SHP, outShp, api="ogr2ogr") return MERGED_SHP
def lulc_by_cell(tid, boundary, lulc_shps, fishnet, result, workspace): bname = fprop(boundary, 'fn') # Boundary to Raster ref_rst = shp_to_rst(boundary, None, 10, 0, os.path.join(workspace, 'rst_{}.tif'.format(bname))) # Create GRASS GIS Session loc_name = 'loc_' + bname gbase = run_grass(workspace, location=loc_name, srs=ref_rst) import grass.script as grass import grass.script.setup as gsetup gsetup.init(gbase, workspace, loc_name, 'PERMANENT') # GRASS GIS Modules from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.gop.ovlay import intersection from gasp.gt.tbl.attr import geomattr_to_db from gasp.gt.prop.feat import feat_count # Send Fishnet to GRASS GIS fnet = shp_to_grs(fishnet, fprop(fishnet, 'fn'), asCMD=True) # Processing ulst = [] l_lulc_grs = [] for shp in lulc_shps: iname = fprop(shp, 'fn') # LULC Class to GRASS GIS lulc_grs = shp_to_grs(shp, iname, filterByReg=True, asCMD=True) if not feat_count( lulc_grs, gisApi='grass', work=workspace, loc=loc_name): continue # Intersect Fishnet | LULC CLass union_grs = intersection(fnet, lulc_grs, iname + '_i', api="grass") # Get Areas geomattr_to_db(union_grs, "areav", "area", "boundary", unit='meters') # Export Table funion = grs_to_shp(union_grs, os.path.join(result, iname + '.shp'), 'area') ulst.append(funion) l_lulc_grs.append(lulc_grs) # Intersect between all LULC SHPS ist_shp = [] if len(l_lulc_grs) > 1: for i in range(len(l_lulc_grs)): for e in range(i + 1, len(l_lulc_grs)): ishp = intersection(l_lulc_grs[i], l_lulc_grs[e], 'lulcint_' + str(i) + '_' + str(e), api="grass") if not feat_count( ishp, gisApi='grass', work=workspace, loc=loc_name): continue else: ist_shp.append(ishp) if len(ist_shp): from gasp.gt.gop.genze import dissolve from gasp.gt.tbl.grs import reset_table if len(ist_shp) > 1: from gasp.gt.toshp.mtos import shps_to_shp # Export shapes _ist_shp = [ grs_to_shp(s, os.path.join(workspace, loc_name, s + '.shp'), 'area') for s in ist_shp ] # Merge Intersections merge_shp = shps_to_shp(_ist_shp, os.path.join(workspace, loc_name, 'merge_shp.shp'), api='pandas') # Import GRASS merge_shp = shp_to_grs(merge_shp, 'merge_shp') else: merge_shp = ist_shp[0] # Dissolve Shape reset_table(merge_shp, {'refid': 'varchar(2)'}, {'refid': '1'}) overlay_areas = dissolve(merge_shp, 'overlay_areas', 'refid', api='grass') # Union Fishnet | Overlay's union_ovl = intersection(fnet, overlay_areas, 'ovl_union', api="grass") funion_ovl = grs_to_shp(union_ovl, os.path.join(result, union_ovl + '.shp'), 'area') ulst.append(funion_ovl) # Export Tables return ulst
def make_dem(grass_workspace, data, field, output, extent_template, method="IDW", cell_size=None, mask=None): """ Create Digital Elevation Model Methods Available: * IDW; * BSPLINE; * SPLINE; * CONTOUR; """ from gasp.pyt.oss import fprop from gasp.gt.wenv.grs import run_grass from gasp.gt.prop.prj import get_epsg LOC_NAME = fprop(data, 'fn', forceLower=True)[:5] + "_loc" # Get EPSG From Raster EPSG = get_epsg(extent_template) if not EPSG: raise ValueError( 'Cannot get EPSG code of Extent Template File ({})'.format( extent_template)) # Know if data geometry are points if method == 'BSPLINE' or method == 'SPLINE': from gasp.gt.prop.feat import get_gtype data_gtype = get_gtype(data, gisApi='ogr') # Create GRASS GIS Location grass_base = run_grass(grass_workspace, location=LOC_NAME, srs=EPSG) # Start GRASS GIS Session import grass.script as grass import grass.script.setup as gsetup gsetup.init(grass_base, grass_workspace, LOC_NAME, 'PERMANENT') # Get Extent Raster ref_template = ob_ref_rst(extent_template, os.path.join(grass_workspace, LOC_NAME), cellsize=cell_size) # IMPORT GRASS GIS MODULES # from gasp.gt.torst import rst_to_grs, grs_to_rst from gasp.gt.toshp.cff import shp_to_grs from gasp.gt.wenv.grs import rst_to_region # Configure region rst_to_grs(ref_template, 'extent') rst_to_region('extent') # Convert elevation "data" to GRASS Vector elv = shp_to_grs(data, 'elevation') OUTPUT_NAME = fprop(output, 'fn', forceLower=True) if method == "BSPLINE": from gasp.gt.nop.itp import bspline # Convert to points if necessary if data_gtype != 'POINT' and data_gtype != 'MULTIPOINT': from gasp.gt.toshp.cgeo import feat_vertex_to_pnt elev_pnt = feat_vertex_to_pnt(elv, "elev_pnt", nodes=None) else: elev_pnt = elv outRst = bspline(elev_pnt, field, OUTPUT_NAME, mway='bicubic', lyrN=1, asCMD=True) elif method == "SPLINE": from gasp.gt.nop.itp import surfrst # Convert to points if necessary if data_gtype != 'POINT' and data_gtype != 'MULTIPOINT': from gasp.gt.toshp.cgeo import feat_vertex_to_pnt elev_pnt = feat_vertex_to_pnt(elv, "elev_pnt", nodes=None) else: elev_pnt = elv outRst = surfrst(elev_pnt, field, OUTPUT_NAME, lyrN=1, ascmd=True) elif method == "CONTOUR": from gasp.gt.torst import shp_to_rst from gasp.gt.nop.itp import surfcontour # Apply mask if mask if mask: from gasp.gt.torst import grs_to_mask, rst_to_grs rst_mask = rst_to_grs(mask, 'rst_mask', as_cmd=True) grs_to_mask(rst_mask) # Elevation (GRASS Vector) to Raster elevRst = shp_to_rst(elv, field, None, None, 'rst_elevation', api="pygrass") # Run Interpolator outRst = surfcontour(elevRst, OUTPUT_NAME, ascmd=True) elif method == "IDW": from gasp.gt.nop.itp import ridw from gasp.gt.nop.alg import rstcalc from gasp.gt.torst import shp_to_rst # Elevation (GRASS Vector) to Raster elevRst = shp_to_rst(elv, field, None, None, 'rst_elevation', api='pygrass') # Multiply cells values by 100 000.0 rstcalc('int(rst_elevation * 100000)', 'rst_elev_int', api='pygrass') # Run IDW to generate the new DEM ridw('rst_elev_int', 'dem_int', numberPoints=15) # DEM to Float rstcalc('dem_int / 100000.0', OUTPUT_NAME, api='pygrass') # Export DEM to a file outside GRASS Workspace grs_to_rst(OUTPUT_NAME, output) return output
def run_viewshed_by_cpu(tid, db, obs, dem, srs, vis_basename='vis', maxdst=None, obselevation=None): # Create Database new_db = create_db("{}_{}".format(db, str(tid)), api='psql') # Points to Database pnt_tbl = df_to_db(new_db, obs, 'pnt_tbl', api='psql', epsg=srs, geomType='Point', colGeom='geometry') # Create GRASS GIS Session workspace = mkdir( os.path.join(os.path.dirname(dem), 'work_{}'.format(str(tid)))) loc_name = 'vis_loc' gbase = run_grass(workspace, location=loc_name, srs=dem) # Start GRASS GIS Session import grass.script as grass import grass.script.setup as gsetup gsetup.init(gbase, workspace, loc_name, 'PERMANENT') from gasp.gt.torst import rst_to_grs, grs_to_rst from gasp.gt.nop.surf import grs_viewshed from gasp.gt.deldt import del_rst # Send DEM to GRASS GIS grs_dem = rst_to_grs(dem, 'grs_dem', as_cmd=True) # Produce Viewshed for each point in obs for idx, row in obs.iterrows(): # Get Viewshed raster vrst = grs_viewshed(grs_dem, (row.geometry.x, row.geometry.y), '{}_{}'.format(vis_basename, str(row[obs_id])), max_dist=maxdst, obs_elv=obselevation) # Export Raster to File frst = grs_to_rst(vrst, os.path.join(workspace, vrst + '.tif')) # Raster to Array img = gdal.Open(frst) num = img.ReadAsArray() # Two Dimension to One Dimension # Reshape Array numone = num.reshape(num.shape[0] * num.shape[1]) # Get Indexes with visibility visnum = np.arange(numone.shape[0]).astype(np.uint32) visnum = visnum[numone == 1] # Get rows indexes visrow = visnum / num.shape[0] visrow = visrow.astype(np.uint32) # Get cols indexes viscol = visnum - (visrow * num.shape[1]) # Visibility indexes to Pandas DataFrame idxnum = np.full(visrow.shape, row[obs_id]) visdf = pd.DataFrame({ 'pntid': idxnum, 'rowi': visrow, 'coli': viscol }) # Pandas DF to database # Create Visibility table df_to_db(new_db, visdf, vis_basename, api='psql', colGeom=None, append=None if not idx else True) # Delete all variables numone = None visnum = None visrow = None viscol = None idxnum = None visdf = None del img # Delete GRASS GIS File del_rst(vrst) # Delete TIFF File del_file(frst) frst = None
def joinLines_by_spatial_rel_raster(mainLines, mainId, joinLines, joinCol, outfile, epsg): """ Join Attributes based on a spatial overlap. An raster based approach """ import os import pandas from geopandas import GeoDataFrame from gasp.gt.fmshp import shp_to_obj from gasp.gt.toshp import df_to_shp from gasp.gt.toshp.coord import shpext_to_boundshp from gasp.gt.torst import shp_to_rst from gasp.g.to import df_to_geodf from gasp.gt.wenv.grs import run_grass from gasp.pyt.df.joins import join_dfs from gasp.pyt.df.agg import df_groupBy from gasp.pyt.oss import fprop, mkdir workspace = mkdir(os.path.join(os.path.dirname(mainLines, 'tmp_dt'))) # Create boundary file boundary = shpext_to_boundshp(mainLines, os.path.join(workspace, "bound.shp"), epsg) boundRst = shp_to_rst(boundary, None, 5, -99, os.path.join(workspace, "rst_base.tif"), epsg=epsg, api='gdal') # Start GRASS GIS Session gbase = run_grass(workspace, location="grs_loc", srs=boundRst) import grass.script as grass import grass.script.setup as gsetup gsetup.init(gbase, workspace, "grs_loc", "PERMANENT") from gasp.gt.nop.local import combine from gasp.gt.prop.rst import get_rst_report_data from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.torst import shp_to_rst # Add data to GRASS GIS mainVector = shp_to_grs(mainLines, fprop(mainLines, 'fn', forceLower=True)) joinVector = shp_to_grs(joinLines, fprop(joinLines, 'fn', forceLower=True)) mainRst = shp_to_rst(mainVector, mainId, None, None, "rst_" + mainVector, api='pygrass') joinRst = shp_to_rst(joinVector, joinCol, None, None, "rst_" + joinVector, api='pygrass') combRst = combine(mainRst, joinRst, "combine_rst", api="pygrass") combine_data = get_rst_report_data(combRst, UNITS="c") combDf = pandas.DataFrame(combine_data, columns=["comb_cat", "rst_1", "rst_2", "ncells"]) combDf = combDf[combDf["rst_2"] != '0'] combDf["ncells"] = combDf["ncells"].astype(int) gbdata = df_groupBy(combDf, ["rst_1"], "MAX", "ncells") fTable = join_dfs(gbdata, combDf, ["rst_1", "ncells"], ["rst_1", "ncells"]) fTable["rst_2"] = fTable["rst_2"].astype(int) fTable = df_groupBy(fTable, ["rst_1", "ncells"], STAT='MIN', STAT_FIELD="rst_2") mainLinesCat = grs_to_shp(mainVector, os.path.join(workspace, mainVector + '.shp'), 'line') mainLinesDf = shp_to_obj(mainLinesCat) resultDf = join_dfs(mainLinesDf, fTable, "cat", "rst_1", onlyCombinations=None) resultDf.rename(columns={"rst_2": joinCol}, inplace=True) resultDf = df_to_geodf(resultDf, "geometry", epsg) df_to_shp(resultDf, outfile) return outfile
def shp_diff_fm_ref(refshp, refcol, shps, out_folder, refrst, db=None): """ Check differences between each shp in shps and one reference shape Dependencies: - GRASS; - PostgreSQL with Postgis or GeoPandas; """ import os from gasp.gt.prop.ff import check_isRaster from gasp.gt.wenv.grs import run_grass from gasp.pyt.oss import fprop from gasp.gt.tbl.tomtx import tbl_to_areamtx # Check if folder exists, if not create it if not os.path.exists(out_folder): from gasp.pyt.oss import mkdir mkdir(out_folder) # Start GRASS GIS Session gbase = run_grass(out_folder, grassBIN='grass78', location='shpdif', srs=refrst) import grass.script.setup as gsetup gsetup.init(gbase, out_folder, 'shpdif', 'PERMANENT') from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp from gasp.gt.torst import rst_to_grs from gasp.gt.tbl.fld import rn_cols from gasp.gt.toshp.rst import rst_to_polyg # Convert to SHAPE if file is Raster # Rename interest columns i = 0 lstff = [refshp] + list(shps.keys()) __shps = {} for s in lstff: is_rst = check_isRaster(s) if is_rst: # To GRASS rname = fprop(s, 'fn') inrst = rst_to_grs(s, "rst_" + rname, as_cmd=True) # To vector d = rst_to_polyg(inrst, rname, rstColumn="lulc_{}".format(str(i)), gisApi="grass") else: # To GRASS d = shp_to_grs(s, fprop(s, 'fn'), asCMD=True) # Change name of interest colum rn_cols(d, {shps[s] if i else refcol: "lulc_{}".format(str(i))}, api="grass") # Export To Shapefile if not i: refshp = grs_to_shp(d, os.path.join(out_folder, d + '.shp'), 'area') refcol = "lulc_{}".format(str(i)) else: shp = grs_to_shp(d, os.path.join(out_folder, d + '.shp'), 'area') __shps[shp] = "lulc_{}".format(str(i)) i += 1 # Union Shapefiles union_shape = {} for shp in __shps: # Optimized Union sname = fprop(shp, 'fn') union_shape[shp] = optimized_union_anls( shp, refshp, os.path.join(out_folder, sname + '_un.shp'), refrst, os.path.join(out_folder, "wk_" + sname), multiProcess=True) # Produce confusion matrices mtxf = tbl_to_areamtx(union_shape[shp], "a_" + __shps[shp], 'b_' + refcol, os.path.join(out_folder, sname + '.xlsx'), db=db, with_metrics=True) return out_folder
def match_cellsize_and_clip(rstBands, refRaster, outFolder, clipShp=None): """ Resample images to make them with the same resolution and clip Good to resample Sentinel bands with more than 10 meters. Dependencies: * GRASS GIS; * GDAL/OGR. """ import os from gasp.gt.prop.prj import get_rst_epsg from gasp.gt.wenv.grs import run_grass from gasp.pyt.oss import fprop, mkdir # Check if outfolder exists if not os.path.exists(outFolder): mkdir(outFolder, overwrite=None) # Get EPSG from refRaster epsg = get_rst_epsg(refRaster, returnIsProj=None) """ Start GRASS GIS Session """ GRS_WORKSPACE = mkdir(os.path.join(outFolder, 'grswork')) grsb = run_grass( GRS_WORKSPACE, grassBIN='grass78', location='resample', srs=epsg ) import grass.script as grass import grass.script.setup as gsetup gsetup.init(grsb, GRS_WORKSPACE, 'resample', 'PERMANENT') """ Import packages related with GRASS GIS """ from gasp.gt.torst import rst_to_grs, grs_to_rst from gasp.gt.wenv.grs import rst_to_region from gasp.gt.toshp.cff import shp_to_grs from gasp.gt.torst import shp_to_rst, grs_to_mask # Send Ref Raster to GRASS GIS and set region extRst = rst_to_grs(refRaster, 'ext_rst') rst_to_region(extRst) # Import all bands in rstBands grs_bands = [rst_to_grs(i, fprop(i, 'fn')) for i in rstBands] if clipShp: # Add clipShp to GRASS grs_clip = shp_to_grs(clipShp, fprop(clipShp, 'fn'), asCMD=True) # SHP to Raster rstClip = shp_to_rst( grs_clip, 1, None, 0, 'rst_' + grs_clip, api='grass' ) # Set region using rst_to_region(rstClip) # Set mask grs_to_mask(rstClip) # Export bands return [grs_to_rst( i, os.path.join(outFolder, i + '.tif') ) for i in grs_bands]
def v_break_at_points(workspace, loc, lineShp, pntShp, db, srs, out_correct, out_tocorrect): """ Break lines at points - Based on GRASS GIS v.edit Use PostGIS to sanitize the result TODO: Confirm utility Problem: GRASS GIS always uses the first line to break. """ import os from gasp.gql.to import shp_to_psql from gasp.gt.toshp.db import dbtbl_to_shp from gasp.gt.wenv.grs import run_grass from gasp.pyt.oss import fprop from gasp.sql.db import create_db from gasp.sql.to import q_to_ntbl tmpFiles = os.path.join(workspace, loc) gbase = run_grass(workspace, location=loc, srs=srs) import grass.script as grass import grass.script.setup as gsetup gsetup.init(gbase, workspace, loc, 'PERMANENT') from gasp.gt.toshp.cff import shp_to_grs, grs_to_shp grsLine = shp_to_grs( lineShp, fprop(lineShp, 'fn', forceLower=True) ) vedit_break(grsLine, pntShp, geomType='line') LINES = grs_to_shp(grsLine, os.path.join( tmpFiles, grsLine + '_v1.shp'), 'line') # Sanitize output of v.edit.break using PostGIS create_db(db, overwrite=True, api='psql') LINES_TABLE = shp_to_psql( db, LINES, srsEpsgCode=srs, pgTable=fprop(LINES, 'fn', forceLower=True), api="shp2pgsql" ) # Delete old/original lines and stay only with the breaked one Q = ( "SELECT {t}.*, foo.cat_count FROM {t} INNER JOIN (" "SELECT cat, COUNT(cat) AS cat_count, " "MAX(ST_Length(geom)) AS max_len " "FROM {t} GROUP BY cat" ") AS foo ON {t}.cat = foo.cat " "WHERE foo.cat_count = 1 OR foo.cat_count = 2 OR (" "foo.cat_count = 3 AND ST_Length({t}.geom) <= foo.max_len)" ).format(t=LINES_TABLE) CORR_LINES = q_to_ntbl( db, "{}_corrected".format(LINES_TABLE), Q, api='psql' ) # TODO: Delete Rows that have exactly the same geometry # Highlight problems that the user must solve case by case Q = ( "SELECT {t}.*, foo.cat_count FROM {t} INNER JOIN (" "SELECT cat, COUNT(cat) AS cat_count FROM {t} GROUP BY cat" ") AS foo ON {t}.cat = foo.cat " "WHERE foo.cat_count > 3" ).format(t=LINES_TABLE) ERROR_LINES = q_to_ntbl( db, "{}_not_corr".format(LINES_TABLE), Q, api='psql' ) dbtbl_to_shp( db, CORR_LINES, "geom", out_correct, api="pgsql2shp" ) dbtbl_to_shp( db, ERROR_LINES, "geom", out_tocorrect, api="pgsql2shp" )