示例#1
0
def animate(i):
    gen = gg.GaussDistribution((2*i) + 1, sigma=sigma).sample(nentries=stats)
    x, y = plotter.getplotxy(gen)
    line.set_xdata(x)  # update the data
    line.set_ydata(y)  # update the data
    return line,
示例#2
0
import gaussguess as gg
import gaussguess.plotter as plotter

NBINS = 21
sigma = 0.15
fig, ax = plt.subplots()

classes = ["gauss", "uniform", "triangular", "laplace", "poisson"]
iclasses = range(len(classes))

classifier = gg.DistributionMultiLabelClassifier(NBINS, nlabels=len(classes))
classifier.loadmodel("{}bins_model_multilabel.h5".format(NBINS))
normop = lambda x: x / max(x) if max(x) > 0 else 0

dist = gg.GaussDistribution(NBINS, sigma=sigma, xlim=[0, 1])
gen = dist.sample(nentries=1).normalise()
prediction = classifier.predict(gen)
x, y = plotter.getplotxy(gen.normalise(op=normop))
lims = gen.limits

line, = ax.plot(x, y, 'k', alpha=0.6)
stat_label = ax.text(0.01, 0.99, "{} entries".format(1))
texts = []
startX = 0.7
startY = 0.95
for i, c in enumerate(classes):
    texts.append(
        ax.text(startX, startY, "{} = {:.2f}%".format(c, prediction[i] * 100)))
    startY -= 0.05
示例#3
0
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np

import gaussguess as gg
import gaussguess.plotter as plotter


stats = 100000
sigma = 0.05
fig, ax = plt.subplots()

gen = gg.GaussDistribution(3, sigma=sigma).sample(nentries=stats)
x, y = plotter.getplotxy(gen)
lims = gen.limits

line, = ax.plot(x, y, 'k', alpha=0.6)

def animate(i):
    gen = gg.GaussDistribution((2*i) + 1, sigma=sigma).sample(nentries=stats)
    x, y = plotter.getplotxy(gen)
    line.set_xdata(x)  # update the data
    line.set_ydata(y)  # update the data
    return line,

ani = animation.FuncAnimation(fig, animate, np.arange(0, 100),
                                interval=50, blit=False)

plt.xlim(lims)
plt.ylabel("count / {:.3e}".format(gen.binwidth))
plt.title("Increasing number of bins")
示例#4
0
import gaussguess as gg

nbins = 9
stats = 100
sn_ratio = 100
signal = gg.GaussDistribution(nbins, sigma=0.1).sample(nentries=stats)
noise = gg.UniformDistribution(nbins).sample(nentries=100)
measured = signal + (stats / sn_ratio) * noise
# print(gen.values)
gg.histplot(signal).show()
gg.histplot(noise).show()
gg.histplot(measured).show()
示例#5
0
import gaussguess as gg
import gaussguess.plotter as plotter

nbins = 11
stats = 1000

dists = [
    gg.GaussDistribution(nbins, sigma=0.1),
    gg.GaussDistribution(nbins, sigma=1.0),
    gg.GaussDistribution(nbins, sigma=2.0, xlim=[0, 10]),
    gg.LaplaceDistribution(nbins, lam=0.1),
    gg.LaplaceDistribution(nbins, lam=1.2),
    gg.UniformDistribution(nbins),
    gg.UniformDistribution(3),
    gg.TriangularDistribution(nbins),
    gg.TriangularDistribution(nbins, center=0.4),
    gg.TriangularDistribution(47),
    gg.PoissonDistribution(nbins),
    gg.PoissonDistribution(nbins, lam=6, xlim=[0, 10]),
]

for d in dists:
    result = d.sample(nentries=stats)
    plotter.histplot(result).show()
示例#6
0
import gaussguess as gg

NBINS = 21

signaldists = [
    gg.GaussDistribution(NBINS, sigma=0.05),
    gg.GaussDistribution(NBINS, sigma=0.1),
    gg.GaussDistribution(NBINS, sigma=0.15),
    gg.GaussDistribution(NBINS, sigma=0.2),
    gg.GaussDistribution(NBINS, sigma=0.25),
    gg.GaussDistribution(NBINS, sigma=0.3),
    gg.GaussDistribution(NBINS, sigma=0.4),
    gg.GaussDistribution(NBINS, sigma=2.0, xlim=[0, 10]),
]

backgrounddists = [
    gg.LaplaceDistribution(NBINS, lam=0.1),
    gg.LaplaceDistribution(NBINS, lam=1.2),
    gg.UniformDistribution(NBINS),
    gg.TriangularDistribution(NBINS),
    gg.TriangularDistribution(NBINS, center=0.4),
    gg.TriangularDistribution(NBINS, center=0.3),
    gg.TriangularDistribution(NBINS, center=0.8),
    gg.PoissonDistribution(NBINS),
    gg.PoissonDistribution(NBINS, lam=6, xlim=[0, 10]),
]

classifier = gg.DistributionBinaryClassifier(NBINS)
classifier.generatedata(signaldists,
                        backgrounddists,
                        nloops=50000,
示例#7
0
import gaussguess as gg

NTRUE = 100000
NFALSE = 100000
NBINS = 5
SIGMA = 1.0
STATS = 100

counter = 0
with open('samples_size{}.csv'.format(NBINS), 'wt') as csv:
    csv.write("index,sigma,stats,isgauss,{}\n".format(",".join(
        ["bin{}".format(i) for i in range(NBINS)])))
    for _ in range(NTRUE):
        signal = gg.GaussDistribution(NBINS,
                                      sigma=SIGMA).sample(nentries=STATS)
        csv.write("{},{},{},{}".format(counter, SIGMA, STATS, 1))
        for v in signal.values:
            csv.write(",{:.15e}".format(v))
        csv.write("\n")
        counter += 1
    for _ in range(NTRUE):
        background = gg.UniformDistribution(NBINS).sample(nentries=STATS)
        csv.write("{},{},{},{}".format(counter, SIGMA, STATS, 0))
        for v in background.values:
            csv.write(",{:.15e}".format(v))
        csv.write("\n")
        counter += 1
import gaussguess as gg

NBINS = 111

classes = ["gauss", "uniform", "triangular", "laplace", "poisson"]
iclasses = range(len(classes))

getlabel = lambda name: iclasses[classes.index(name)]
labeled_data = [
    (getlabel("gauss"), gg.GaussDistribution(NBINS, sigma=0.05)),
    (getlabel("gauss"), gg.GaussDistribution(NBINS, sigma=0.10)),
    (getlabel("gauss"), gg.GaussDistribution(NBINS, sigma=0.15)),
    (getlabel("gauss"), gg.GaussDistribution(NBINS, sigma=0.75)),
    (getlabel("gauss"), gg.GaussDistribution(NBINS, sigma=0.20)),
    (getlabel("gauss"), gg.GaussDistribution(NBINS, sigma=0.20)),
    (getlabel("laplace"), gg.LaplaceDistribution(NBINS, lam=0.1)),
    (getlabel("laplace"), gg.LaplaceDistribution(NBINS, lam=0.12)),
    (getlabel("laplace"), gg.LaplaceDistribution(NBINS, lam=0.052)),
    (getlabel("uniform"), gg.UniformDistribution(NBINS)),
    (getlabel("uniform"), gg.UniformDistribution(NBINS)),
    (getlabel("uniform"), gg.UniformDistribution(NBINS)),
    (getlabel("uniform"), gg.UniformDistribution(NBINS)),
    (getlabel("triangular"), gg.TriangularDistribution(NBINS, center=0.1)),
    (getlabel("triangular"), gg.TriangularDistribution(NBINS, center=0.2)),
    (getlabel("triangular"), gg.TriangularDistribution(NBINS, center=0.5)),
    (getlabel("triangular"), gg.TriangularDistribution(NBINS, center=0.6)),
    (getlabel("triangular"), gg.TriangularDistribution(NBINS, center=0.99)),
    (getlabel("triangular"), gg.TriangularDistribution(NBINS, center=0.4)),
    (getlabel("poisson"), gg.PoissonDistribution(NBINS, lam=6, xlim=[0, 10])),
    (getlabel("poisson"), gg.PoissonDistribution(NBINS, lam=2, xlim=[0, 10])),
    (getlabel("poisson"), gg.PoissonDistribution(NBINS, lam=3, xlim=[0, 10])),