示例#1
0
def run_simulation(n, A1, clebsch_graph, iterations, perturbation_scale=0.1):
    correct_count = 0
    epsilon_vector = np.zeros(n)  # no small parameter

    # graph deconvolver with new components
    graph_deconvolver = GraphDeconvolver(n, A1, clebsch_graph.adjacency_list)

    for i in range(0, iterations):
        # perturb matrix (introduce noise to the weights)
        clebsch_matrix = perturb_matrix(clebsch_graph.adjacency_matrix,
                                        perturbation_scale)

        #convolved graphs
        A_matrix = Graph.create_adjacency_matrix(n, A1) + clebsch_matrix

        status, problem_value, A1_star, A2_star = graph_deconvolver.deconvolve(
            A_matrix, epsilon_vector)

        print('Problem status: ', status)
        cycle = is_cycle(Graph.create_adjacency_list(n, A1_star))
        print('Is cycle: ', cycle)

        if cycle:
            correct_count += 1
    return correct_count
def run_simulation(n,
                   A1,
                   clebsch_graph,
                   iterations,
                   perturbation_scale=0.1,
                   epsilon=0):
    correct_count = 0
    epsilon_vector = epsilon * np.ones(n)
    for i in range(0, iterations):
        # perturb matrix (introduce noise to the weights)
        clebsch_matrix = perturb_matrix(clebsch_graph.adjacency_matrix,
                                        perturbation_scale)
        A2 = Graph.create_adjacency_list(
            n, clebsch_matrix
        )  #need to do this as it hasn't updated the internal adjacency list representation

        # graph deconvolver with new components
        graph_deconvolver = GraphDeconvolver(n, A1, A2)

        #convolved graphs
        A_matrix = Graph.create_adjacency_matrix(n, A1) + clebsch_matrix

        status, problem_value, A1_star, A2_star = graph_deconvolver.deconvolve(
            A_matrix, epsilon_vector)

        if status == 'optimal':
            print('Problem status: ', status)
            cycle = is_cycle(Graph.create_adjacency_list(n, A1_star))
            print('Is cycle: ', cycle)

            if cycle:
                correct_count += 1
    return correct_count
示例#3
0
def run_simulation(n, cycle, itererations, perturbation_scale=0.1, epsilon=0):
    correct_count = 0

    graph_denoiser = GraphDenoiser(n, cycle)

    A_matrix = Graph.create_adjacency_matrix(n, A)

    # vector of small parameters for spectral hull
    epsilon_vector = epsilon * np.ones(n)

    # adjacency matrix to compare against to check is denoised correctly
    #test_clebsch_adjacency_matrix = Graph.create_adjacency_matrix(n,cycle)

    for i in range(0, iterations):
        # perturb matrix (introduce noise to the weights)
        A_matrix_noisy = perturb_matrix(A_matrix, perturbation_scale)

        status, problem_value, A_recovered = graph_denoiser.denoise(
            A_matrix_noisy, epsilon_vector)

        if status == 'optimal':
            print('Problem status: ', status)
            cycle = is_cycle(Graph.create_adjacency_list(n, A_recovered))
            print('Is cycle: ', cycle)

            # check for clebsch graph
            #cycle = np.allclose(test_clebsch_adjacency_matrix,A_recovered, atol=1e-3)
            #print('Is clebsch graph: ', cycle)

            if cycle:
                correct_count += 1
    return correct_count
def run_simulation(n, cycle,itererations, perturbation_scale = 0.1):

  correct_count = 0

  graph_denoiser = GraphDenoiser(n,cycle)
  
  A_matrix = Graph.create_adjacency_matrix(n,A)  

  # generate cum sum of mean shift in eigenvalue distribution 


  for i in range(0,iterations):
    # perturb matrix (introduce noise to the weights)
    A_matrix_noisy = perturb_matrix(A_matrix,perturbation_scale)

    epsilon_vector = calculate_epsilon_vector(A_matrix,A_matrix_noisy)
    print

    status,problem_value,A_recovered= graph_denoiser.denoise(A_matrix_noisy,epsilon_vector)

    print('Problem status: ',status)
    cycle = is_cycle(Graph.create_adjacency_list(n,A_recovered))
    print('Is cycle: ', cycle)

    if cycle:
     correct_count +=1
  return correct_count
示例#5
0
def run_simulation(n, cycle, itererations, perturbation_scale=0.1, epsilon=0):
    correct_count = 0

    graph_denoiser = GraphDenoiser(n, cycle)

    A_matrix = Graph.create_adjacency_matrix(n, A)

    # vector of small parameters for spectral hull
    epsilon_vector = epsilon * np.ones(n)

    for i in range(0, iterations):
        # perturb matrix (introduce noise to the weights)
        A_matrix_noisy = perturb_matrix(A_matrix, perturbation_scale)

        status, problem_value, A_recovered = graph_denoiser.denoise(
            A_matrix_noisy, epsilon_vector)

        if status == 'optimal':
            print('Problem status: ', status)
            cycle = is_cycle(Graph.create_adjacency_list(n, A_recovered))
            print('Is cycle: ', cycle)

            if cycle:
                correct_count += 1
    return correct_count
示例#6
0
def mean_shift_eigenvalue_distribution(graph_matrix, sigma):
    n = graph_matrix.shape[0]
    means = np.zeros(n)

    original_eigenvalues = eigvalsh(graph_matrix)
    iterations = 1000
    for iteration in range(iterations):
        eigenvalues = eigvalsh(perturb_matrix(graph_matrix,
                                              sigma)) - original_eigenvalues
        means += (eigenvalues - means) / (1.0 + iteration)
    return np.cumsum(means)
示例#7
0
def run_simulation(n,
                   multipartite_graph_matrix,
                   iterations,
                   partitions,
                   perturbation_scale=0.1):
    correct_count = 0

    graph_denoiser = GraphDenoiser(
        n, Graph.create_adjacency_list(n, multipartite_graph_matrix))

    # vector of small parameters for spectral hull
    epsilon_vector = epsilon * np.ones(n)

    for i in range(0, iterations):

        A_matrix_noisy = perturb_matrix(multipartite_graph_matrix,
                                        perturbation_scale)

        status, problem_value, A_recovered = graph_denoiser.denoise(
            A_matrix_noisy, epsilon_vector)

        # first check has the correct degree sequence before check multipartite, (needs to be complete)
        correct_degree_sequence = check_degree_sequence(
            partitions, np.round(A_recovered)
        )  # check_degree_sequence can't deal with weighted edges so round

        if correct_degree_sequence:
            adjacency_table = Graph.create_adjacency_table(n, A_recovered)
            multipartite_graph_recognizer = Multipartite_graph_recognizer(
                partitions, adjacency_table)
            ok = multipartite_graph_recognizer.check()
            print('multipartite:', multipartite_graph_recognizer.match)
        else:
            print('incorrect degree sequence')
            ok = False

        if ok:
            correct_count += 1
    return correct_count
def run_simulation(n, A1, multipartite_graph_matrix, iterations, partitions, perturbation_scale = 0.1):
  correct_count = 0
  for i in range(0,iterations):
    # perturb matrix (introduce noise to the weights)
    graph_matrix = perturb_matrix(n,multipartite_graph_matrix, perturbation_scale)
    A2 = Graph.create_adjacency_list(n,graph_matrix) #need to do this as it hasn't updated the internal adjacency list representation

    # graph deconvolver with new components
    graph_deconvolver = GraphDeconvolver(n,A1,A2)

    #convolved graphs
    A_matrix  = Graph.create_adjacency_matrix(n,A1) + graph_matrix

    status,problem_value,A1_star,A2_star= graph_deconvolver.deconvolve(A_matrix)

    # first check has the correct degree sequence before check multipartite, (needs to be complete)
    correct_degree_sequence = check_degree_sequence(partitions,np.round(A2_star)) # check_degree_sequence can't deal with weighted edges so round

    if correct_degree_sequence:
      adjacency_table = Graph.create_adjacency_table(n,A2_star)
      #print('p=',partitions,'\ng=',adjacency_table)
      multipartite_graph_recognizer=Multipartite_graph_recognizer(partitions,adjacency_table)
      ok=multipartite_graph_recognizer.check()
      print('multipartite:',multipartite_graph_recognizer.match)
    else:
      print('incorrect degree sequence')
      ok=False

    np.set_printoptions(suppress=True)
    print('Problem status: ',status)
    cycle = is_cycle(Graph.create_adjacency_list(n,A1_star))
    print('Is cycle: ', cycle)
    print('A2 correct: ',ok)

    if cycle and ok:
     correct_count +=1
  return correct_count
示例#9
0
        (10, 12),
        (10, 13),
        (11, 13),
        (11, 14),
        (12, 14),
    )

    #A_matrix =  bicycle(n)
    #A = Graph.create_adjacency_list(n,A_matrix)

    graph_denoiser = GraphDenoiser(n, A)

    # add gaussian noise to cycle

    A_matrix = Graph.create_adjacency_matrix(n, A)
    A_matrix_noisy = perturb_matrix(A_matrix, 0.2)

    epsilon_vector = np.zeros(n)

    status, problem_value, A_recovered = graph_denoiser.denoise(
        A_matrix_noisy, epsilon_vector)

    np.set_printoptions(precision=1e-3, suppress=True)
    print('Problem status: ', status)
    print('Norm value: ', problem_value)
    print('Recovered A:  \n', A_recovered)
    print('is cycle graph: ',
          is_cycle(Graph.create_adjacency_list(n, A_recovered)))

    def set_visualiser_attributes(graph_visualiser):
        graph_visualiser.A.node_attr['shape'] = 'circle'