示例#1
0
    def _write_tfrecord(pkl_fname, tfrecord_fname, obs_shape):
        writer = tf.python_io.TFRecordWriter(tfrecord_fname)

        rollouts = mypickle.load(pkl_fname)['rollouts']
        for r in rollouts:
            images = r['env_infos']['rgb']
            semantics = r['env_infos']['semantic']

            for image, semantic in zip(images, semantics):
                rightlane_mask = CarlaCollSpeedRoadEnv.get_rightlane(
                    semantic)[0].astype(np.uint8)

                image = utils.imresize(image, obs_shape)
                rightlane_mask = utils.imresize(rightlane_mask[..., None],
                                                obs_shape[:2] + [1],
                                                PIL.Image.BILINEAR)[..., -1]

                example = tf.train.Example(features=tf.train.Features(
                    feature={
                        'image':
                        RoadLabeller._bytes_feature(image.tostring()),
                        'label':
                        RoadLabeller._bytes_feature(rightlane_mask.tostring()),
                    }))
                writer.write(example.SerializeToString())

        writer.close()
示例#2
0
def create_training_data(save_folder, image_shape, rescale, bordersize,
                         holdout_pct):
    """
    :param save_folder: where images are saved
    :param image_shape: shape of the image
    :param rescale: make rescale times bigger, for ease of labelling
    :param bordersize: how much to pad with 0s, for ease of labelling
    :param holdout_pct: how much data to holdout
    """

    ### read image, label pairs
    label_fnames = glob.glob(os.path.join(save_folder, 'label*'))
    random.shuffle(label_fnames)

    height, width, channels = image_shape

    images_train, labels_train = [], []
    images_holdout, labels_holdout = [], []
    for i, label_fname in enumerate(label_fnames):
        image_fname = label_fname.replace('label_', '')

        image = np.asarray(Image.open(image_fname))
        label = np.asarray(Image.open(label_fname))

        # reduce image back down
        image = image[bordersize:-bordersize, bordersize:-bordersize]
        image = utils.imresize(image, (height, width, channels))
        assert (tuple(image.shape) == tuple(image_shape))

        # reduce label back down
        label = label[bordersize:-bordersize, bordersize:-bordersize]
        label = utils.imresize(label, (height, width, 1), Image.BILINEAR)
        label = label[:, :, 0]
        label = (label > 0.5)
        assert (tuple(label.shape) == (height, width))

        if i / float(len(label_fnames)) > holdout_pct:
            images_train.append(image)
            labels_train.append(label)
        else:
            images_holdout.append(image)
            labels_holdout.append(label)

    np.save(os.path.join(save_folder, 'data_train_images.npy'),
            np.array(images_train))
    np.save(os.path.join(save_folder, 'data_train_labels.npy'),
            np.array(labels_train))

    np.save(os.path.join(save_folder, 'data_holdout_images.npy'),
            np.array(images_holdout))
    np.save(os.path.join(save_folder, 'data_holdout_labels.npy'),
            np.array(labels_holdout))

    logger.info('Saved train and holdout')
示例#3
0
    def get_model_outputs(self, observations):
        observations = np.asarray(observations)
        assert observations.shape[-1] == self._image_shape[
            -1], 'do not have same number of channels'
        if tuple(observations.shape[1:3]) != tuple(self._image_shape[:2]):
            observations = np.array([
                utils.imresize(o_t, self._image_shape) for o_t in observations
            ])

        feed_dict = {self._tf_dict['obs_ph']: observations}

        probs, = self._tf_dict['sess'].run([self._tf_dict['probs']],
                                           feed_dict=feed_dict)

        return probs
示例#4
0
    def store_observation(self, step, observation, goal, use_labeller=True):
        self._data_step = step
        self._steps[self._index] = step
        obs_im_full, obs_vec = observation

        if self._labeller and use_labeller:
            assert (np.any(np.isnan(goal)))
            goal = self._labeller.label(([obs_im_full], [obs_vec]), [goal])[0]

        #import IPython; IPython.embed()
        obs_im = utils.imresize(obs_im_full, self._obs_im_shape)
        assert (obs_im.shape == self._obs_im_shape)
        self._observations_im[self._index, :] = obs_im.reshape(
            (self._obs_im_dim, ))
        self._observations_vec[self._index, :] = obs_vec.reshape(
            (self._obs_vec_dim, ))
        self._goals[self._index, :] = goal

        return goal
示例#5
0
    def store_observation(self, step, observation, goal, use_labeller=True):
        self._data_step = step
        self._steps[self._index] = step
        obs_im_full, obs_vec = observation

        if self._labeller and use_labeller:
            assert (np.any(np.isnan(goal)))
            goal = self._labeller.label(([obs_im_full], [obs_vec]), [goal])[0]

        if obs_im_full.shape[-1] == 3 and self._obs_im_shape[-1] == 1:
            obs_im_full = utils.im2gray(obs_im_full)
        assert obs_im_full.shape[-1] == 1 or obs_im_full.shape[-1] == 3
        obs_im = utils.imresize(obs_im_full, self._obs_im_shape)
        assert(obs_im.shape == self._obs_im_shape)
        self._observations_im[self._index, :] = obs_im.reshape((self._obs_im_dim,))
        self._observations_vec[self._index, :] = obs_vec.reshape((self._obs_vec_dim,))
        self._goals[self._index, :] = goal

        return goal
示例#6
0
def extract_images_from_pkls(pkl_folder, save_folder, maxsaved, image_shape,
                             rescale, bordersize):
    """
    :param pkl_folder: folder containing pkls with training images
    :param save_folder: where to save the resulting images
    :param maxsaved: how many images to save
    :param image_shape: shape of the image
    :param rescale: make rescale times bigger, for ease of labelling
    :param bordersize: how much to pad with 0s, for ease of labelling
    """
    random.seed(0)

    fnames = glob.glob(os.path.join(pkl_folder, '*.pkl'))
    random.shuffle(fnames)
    logger.info('{0} files to read'.format(len(fnames)))
    fnames = itertools.cycle(fnames)

    im_num = 0
    while im_num < maxsaved:
        fname = next(fnames)
        rollout = random.choice(mypickle.load(fname)['rollouts'])
        obs = random.choice(rollout['observations_im'])

        height, width, channels = image_shape

        im = np.reshape(obs, image_shape)
        im = utils.imresize(im, (rescale * height, rescale * width, channels))
        im = np.pad(im, ((bordersize, bordersize), (bordersize, bordersize),
                         (0, 0)), 'constant')
        if im.shape[-1] == 1:
            im = im[:, :, 0]
        Image.fromarray(im).save(
            os.path.join(save_folder, 'image_{0:06d}.jpg'.format(im_num)))
        im_num += 1

    logger.info('Saved {0} images'.format(im_num))
示例#7
0
    def create_rollout(self, r, labeller):
        # observations_im
        # observations_vec - fixed
        # actions - fixed
        # rewards - fixed
        # dones - fixed
        # goals
        # steps - fixed
        # env_infos - use and get rid of

        r_new = {
            'observations_vec': r['observations_vec'],
            'actions': r['actions'],
            'dones': r['dones'],
            'steps': r['steps'],
            'env_infos': None,
        }

        # observations_im
        obs_im = []
        for t in range(len(r['dones']) - 1):
            obs_im_t = []
            for camera_name in self._params['cameras']:
                camera_params = self._params[camera_name]
                if camera_params['include_in_obs']:
                    camera_data = self._convert_camera_data(
                        r['env_infos'][camera_name][t], camera_params)
                    obs_im_t.append(camera_data)
            obs_im_t = np.concatenate(obs_im_t, axis=2)
            obs_im_t = utils.imresize(obs_im_t,
                                      self.observation_im_space.shape)
            obs_im.append(obs_im_t)
        obs_im.append(obs_im[-1])  # b/c env_infos is short by 1
        r_new['observations_im'] = np.array(obs_im)

        # goals
        _, rightlane_seen, rightlane_diff = zip(*[
            CarlaCollSpeedRoadEnv.get_rightlane(s)
            for s in r['env_infos']['semantic']
        ])
        # b/c env_infos are one short
        rightlane_seen = list(rightlane_seen) + [rightlane_seen[-1]]
        rightlane_diff = list(rightlane_diff) + [rightlane_diff[-1]]

        r_new['goals'] = np.hstack([
            r['goals'],
            np.array([rightlane_seen], dtype=np.float32).T,
            np.array([rightlane_diff], dtype=np.float32).T
        ])

        # rewards
        rewards = []
        coll_idx = list(self.observation_vec_spec.keys()).index('coll')
        speed_idx = list(self.observation_vec_spec.keys()).index('speed')
        goal_speed_idx = list(self.goal_spec.keys()).index('speed')
        for t in range(len(r['dones'])):
            if r['observations_vec'][t, coll_idx] > 0:
                r_t = -self.horizon
            else:
                r_t = -abs((r['goals'][t, goal_speed_idx] -
                            r['observations_vec'][t, speed_idx]) /
                           r['goals'][t, goal_speed_idx])

                r_t += 10 * rightlane_seen[t] * (1 - abs(rightlane_diff[t]))

            rewards.append(r_t)
        rewards = rewards[1:] + [0]
        r_new['rewards'] = np.asarray(rewards, dtype=np.float32)

        return r_new
示例#8
0
    def create_rollout(self, r, labeller, keep_env_infos=False):
        # observations_im
        # observations_vec - fixed
        # actions - fixed
        # rewards - fixed
        # dones - fixed
        # goals
        # steps - fixed
        # env_infos - use and get rid of

        r_new = {
            'observations_vec': r['observations_vec'],
            'actions': r['actions'],
            'dones': r['dones'],
            'steps': r['steps'],
            'env_infos': r['env_infos'] if keep_env_infos else None,
        }

        # observations_im
        obs_im = []
        for t in range(len(r['dones']) - 1):
            obs_im_t = []
            for camera_name in self._params['cameras']:
                camera_params = self._params[camera_name]
                if camera_params['include_in_obs']:
                    camera_data = self._convert_camera_data(
                        r['env_infos'][camera_name][t], camera_params)
                    obs_im_t.append(camera_data)
            obs_im_t = np.concatenate(obs_im_t, axis=2)
            obs_im_t = utils.imresize(obs_im_t,
                                      self.observation_im_space.shape)
            obs_im.append(obs_im_t)
        obs_im.append(obs_im[-1])  # b/c env_infos is short by 1
        obs_im = np.array(obs_im)
        r_new['observations_im'] = obs_im

        r_new['goals'] = np.hstack([
            r['goals'],
            np.nan * np.ones([len(r['goals']), 1], dtype=np.float32),
            np.nan * np.ones([len(r['goals']), 1], dtype=np.float32)
        ])

        # goals
        batch_size = 350
        rgb = np.append(r['env_infos']['rgb'],
                        r['env_infos']['rgb'][-1][None],
                        axis=0)
        goals = r_new['goals']
        i = 0
        while i < len(rgb):
            goals[i:i + batch_size] = labeller.label(
                (rgb[i:i + batch_size], None), goals[i:i + batch_size])
            i += batch_size
        r_new['goals'] = goals

        # rewards
        rewards = []
        coll_idx = list(self.observation_vec_spec.keys()).index('coll')
        speed_idx = list(self.observation_vec_spec.keys()).index('speed')
        goal_speed_idx = list(self.goal_spec.keys()).index('speed')
        rightlane_seen_idx = list(
            self.goal_spec.keys()).index('rightlane_seen')
        rightlane_diff_idx = list(
            self.goal_spec.keys()).index('rightlane_diff')
        for t in range(len(r_new['dones'])):
            if r_new['observations_vec'][t, coll_idx] > 0:
                r_t = -self.horizon
            else:
                r_t = -abs((r_new['goals'][t, goal_speed_idx] -
                            r_new['observations_vec'][t, speed_idx]) /
                           r_new['goals'][t, goal_speed_idx])

                r_t += 10 * r_new['goals'][t, rightlane_seen_idx] * (
                    1 - abs(r_new['goals'][t, rightlane_diff_idx]))

            rewards.append(r_t)
        rewards = rewards[1:] + [0]
        r_new['rewards'] = np.asarray(rewards, dtype=np.float32)

        return r_new