示例#1
0
def test_iterated_filter(grid_type_and_input_ds, filter_args, n_iterations):
    "Test that the iterated Gaussian filter gives a result close to the original"

    grid_type, da, grid_vars = grid_type_and_input_ds

    iterated_filter_args = filter_args.copy()
    iterated_filter_args["n_iterations"] = n_iterations

    filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **filter_args)
    iterated_filter = Filter(grid_type=grid_type,
                             grid_vars=grid_vars,
                             **iterated_filter_args)

    filtered = filter.apply(da, dims=["y", "x"])
    iteratively_filtered = iterated_filter.apply(da, dims=["y", "x"])

    area = 1
    for k, v in grid_vars.items():
        if "area" in k:
            area = v
            break

    # The following tests whether a relative error bound in L^2 holds.
    # See the "Factoring the Gaussian Filter" section of the docs for details.
    assert (((filtered - iteratively_filtered)**2) * area).sum() < (
        (0.01 * (1 + n_iterations))**2) * ((da**2) * area).sum()
示例#2
0
def test_nondimensional_invariance():
    # Create a dataset with spatial variables, as above
    dataset = xr.Dataset(
        data_vars=dict(
            spatial=(("y", "x"), np.random.normal(size=(100, 100))),
        ),
        coords=dict(
            x=np.linspace(0, 1e6, 100),
            y=np.linspace(0, 1e6, 100),
        ),
    )

    # Filter it using a nondimensional filter, dx_min = 1
    filter = Filter(
        filter_scale=4,
        dx_min=1,
        filter_shape=FilterShape.GAUSSIAN,
        grid_type=GridType.REGULAR,
    )
    filtered_dataset = filter.apply(dataset, ["y", "x"])

    # Filter it using a nondimensional filter, dx_min = 2
    filter = Filter(
        filter_scale=8,
        dx_min=2,
        filter_shape=FilterShape.GAUSSIAN,
        grid_type=GridType.REGULAR,
    )
    filtered_dataset_v2 = filter.apply(dataset, ["y", "x"])

    # Check if they are the same
    xr.testing.assert_allclose(filtered_dataset.spatial, filtered_dataset_v2.spatial)
示例#3
0
def test_viscosity_filter(
    vector_grid_type_and_input_ds, filter_args, spherical_geometry
):
    """Test all viscosity-based filters: filters that use a vector Laplacian."""
    grid_type, _, grid_vars = vector_grid_type_and_input_ds

    _, geolat_u, _, _ = spherical_geometry

    filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **filter_args)

    # check conservation under solid body rotation: u = cos(lat), v=0;
    data_u = np.cos(geolat_u / 360 * 2 * np.pi)
    data_v = np.zeros_like(data_u)
    da_u = xr.DataArray(data_u, dims=["y", "x"])
    da_v = xr.DataArray(data_v, dims=["y", "x"])
    filtered_u, filtered_v = filter.apply_to_vector(da_u, da_v, dims=["y", "x"])
    xr.testing.assert_allclose(filtered_u, da_u, atol=1e-12)
    xr.testing.assert_allclose(filtered_v, da_v, atol=1e-12)

    # check that we get an error if we pass vector Laplacian to .apply, where
    # the latter method is for scalar Laplacians only
    with pytest.raises(ValueError, match=r"Provided Laplacian *"):
        filtered_u = filter.apply(da_u, dims=["y", "x"])

    # check that we get an error if we leave out any required grid_vars
    for gv in grid_vars:
        grid_vars_missing = {k: v for k, v in grid_vars.items() if k != gv}
        with pytest.raises(ValueError, match=r"Provided `grid_vars` .*"):
            filter = Filter(
                grid_type=grid_type, grid_vars=grid_vars_missing, **filter_args
            )
示例#4
0
def test_application_to_dataset():
    # Create a dataset with both spatial and temporal variables
    dataset = xr.Dataset(
        data_vars=dict(
            spatial=(("y", "x"), np.random.normal(size=(100, 100))),
            temporal=(("time",), np.random.normal(size=(10,))),
            spatiotemporal=(("time", "y", "x"), np.random.normal(size=(10, 100, 100))),
        ),
        coords=dict(
            time=np.linspace(0, 1, 10),
            x=np.linspace(0, 1e6, 100),
            y=np.linspace(0, 1e6, 100),
        ),
    )

    # Filter it using a Gaussian filter
    filter = Filter(
        filter_scale=4,
        dx_min=1,
        filter_shape=FilterShape.GAUSSIAN,
        grid_type=GridType.REGULAR,
    )
    filtered_dataset = filter.apply(dataset, ["y", "x"])

    # Temporal variables should be unaffected because the filter is only
    # applied over space
    xr.testing.assert_allclose(dataset.temporal, filtered_dataset.temporal)

    # Spatial variables should be changed
    with pytest.raises(AssertionError):
        xr.testing.assert_allclose(dataset.spatial, filtered_dataset.spatial)
        xr.testing.assert_allclose(
            dataset.spatiotemporal, filtered_dataset.spatiotemporal
        )

    # Spatially averaged spatiotemporal variables should be unchanged because
    # the filter shouldn't modify the temporal component
    xr.testing.assert_allclose(
        dataset.spatiotemporal.mean(dim=["y", "x"]),
        filtered_dataset.spatiotemporal.mean(dim=["y", "x"]),
    )

    # Warnings should be raised if no fields were filtered
    with pytest.warns(UserWarning, match=r".* nothing was filtered."):
        filter.apply(dataset, ["foo", "bar"])
    with pytest.warns(UserWarning, match=r".* nothing was filtered."):
        filter.apply(dataset, ["yy", "x"])
示例#5
0
def test_diffusion_filter(grid_type_and_input_ds, filter_args):
    """Test all diffusion-based filters: filters that use a scalar Laplacian."""
    grid_type, da, grid_vars = grid_type_and_input_ds

    filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **filter_args)
    filter.plot_shape()
    filtered = filter.apply(da, dims=["y", "x"])

    # check conservation
    area = 1
    for k, v in grid_vars.items():
        if "area" in k:
            area = v
            break
    da_sum = (da * area).sum()
    filtered_sum = (filtered * area).sum()
    xr.testing.assert_allclose(da_sum, filtered_sum)

    # check that we get an error if we pass scalar Laplacian to .apply_to vector,
    # where the latter method is for vector Laplacians only
    with pytest.raises(ValueError, match=r"Provided Laplacian *"):
        filtered_u, filtered_v = filter.apply_to_vector(da, da, dims=["y", "x"])

    # check variance reduction
    assert (filtered**2).sum() < (da**2).sum()

    # check that we get an error if we leave out any required grid_vars
    for gv in grid_vars:
        grid_vars_missing = {k: v for k, v in grid_vars.items() if k != gv}
        with pytest.raises(ValueError, match=r"Provided `grid_vars` .*"):
            filter = Filter(
                grid_type=grid_type, grid_vars=grid_vars_missing, **filter_args
            )

    bad_filter_args = copy.deepcopy(filter_args)
    # check that we get an error when transition_width <= 1
    bad_filter_args["transition_width"] = 1
    with pytest.raises(ValueError, match=r"Transition width .*"):
        filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **bad_filter_args)
    bad_filter_args["transition_width"] = np.pi
    # check that we get an error if ndim > 2 and n_steps = 0
    bad_filter_args["ndim"] = 3
    bad_filter_args["n_steps"] = 0
    with pytest.raises(ValueError, match=r"When ndim > 2, you .*"):
        filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **bad_filter_args)
    # check that we get a warning if n_steps < n_steps_default
    bad_filter_args["ndim"] = 2
    bad_filter_args["n_steps"] = 3
    with pytest.warns(UserWarning, match=r"You have set n_steps .*"):
        filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **bad_filter_args)
    # check that we get an error if we pass dx_min != 1 to a regular scalar Laplacian
    if grid_type in area_weighted_regular_grids:
        bad_filter_args["filter_scale"] = 3  # restore good value for filter scale
        bad_filter_args["dx_min"] = 3
        with pytest.raises(ValueError, match=r"Provided Laplacian .*"):
            filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **bad_filter_args)
示例#6
0
def test_diffusion_filter(grid_type_and_input_ds, filter_args):
    """Test all diffusion-based filters: filters that use a scalar Laplacian."""
    grid_type, da, grid_vars = grid_type_and_input_ds

    filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **filter_args)
    filter.plot_shape()
    filtered = filter.apply(da, dims=["y", "x"])

    # check conservation
    # this would need to be replaced by a proper area-weighted integral
    da_sum = da.sum()
    filtered_sum = filtered.sum()
    xr.testing.assert_allclose(da_sum, filtered_sum)

    # check that we get an error if we pass scalar Laplacian to .apply_to vector,
    # where the latter method is for vector Laplacians only
    with pytest.raises(ValueError, match=r"Provided Laplacian *"):
        filtered_u, filtered_v = filter.apply_to_vector(da,
                                                        da,
                                                        dims=["y", "x"])

    # check variance reduction
    assert (filtered**2).sum() < (da**2).sum()

    # check that we get an error if we leave out any required grid_vars
    for gv in grid_vars:
        grid_vars_missing = {k: v for k, v in grid_vars.items() if k != gv}
        with pytest.raises(ValueError, match=r"Provided `grid_vars` .*"):
            filter = Filter(grid_type=grid_type,
                            grid_vars=grid_vars_missing,
                            **filter_args)

    bad_filter_args = copy.deepcopy(filter_args)
    # check that we get an error if ndim > 2 and n_steps = 0
    bad_filter_args["ndim"] = 3
    bad_filter_args["n_steps"] = 0
    with pytest.raises(ValueError, match=r"When ndim > 2, you .*"):
        filter = Filter(grid_type=grid_type,
                        grid_vars=grid_vars,
                        **bad_filter_args)
    # check that we get a warning if n_steps < n_steps_default
    bad_filter_args["ndim"] = 2
    bad_filter_args["n_steps"] = 3
    with pytest.warns(UserWarning, match=r"Warning: You have set n_steps .*"):
        filter = Filter(grid_type=grid_type,
                        grid_vars=grid_vars,
                        **bad_filter_args)
    # check that we get a warning if numerical instability possible
    bad_filter_args["n_steps"] = 0
    bad_filter_args["filter_scale"] = 1000
    with pytest.warns(UserWarning,
                      match=r"Warning: Filter scale much larger .*"):
        filter = Filter(grid_type=grid_type,
                        grid_vars=grid_vars,
                        **bad_filter_args)
示例#7
0
def _get_results(grid_data_and_input_ds, filter_args):
    grid_type, data, grid_vars = grid_data_and_input_ds

    filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **filter_args)

    if len(data) == 2:  # vector grid
        (filtered_u, filtered_v) = filter.apply_to_vector(*data,
                                                          dims=["y", "x"])
        filtered = np.stack([filtered_u.data, filtered_v.data])
    else:
        filtered = filter.apply(data, dims=["y", "x"])
        filtered = filtered.data

    filtered = filtered.astype("f4")  # use single precision to save space
    return filtered
示例#8
0
def test_filter(grid_type_and_input_ds, filter_args):
    grid_type, da, grid_vars = grid_type_and_input_ds
    filter = Filter(grid_type=grid_type, grid_vars=grid_vars, **filter_args)
    filtered = filter.apply(da, dims=["y", "x"])

    # check conservation
    # this would need to be replaced by a proper area-weighted integral
    xr.testing.assert_allclose(da.sum(), filtered.sum())

    # check variance reduction
    assert (filtered**2).sum() < (da**2).sum()

    # check that we get an error if we leave out any required grid_vars
    for gv in grid_vars:
        grid_vars_missing = {k: v for k, v in grid_vars.items() if k != gv}
        with pytest.raises(ValueError, match=r"Provided `grid_vars` .*"):
            filter = Filter(grid_type=grid_type,
                            grid_vars=grid_vars_missing,
                            **filter_args)