示例#1
0
def idw(output_file, point_station_file):
    """
	idw空间插值
	:param output_file:插值结果
	:param point_station_file: 矢量站点数据
	:return:
	"""
    opts = gdal.GridOptions(
        algorithm=
        "invdistnn:power=2.0:smothing=0.0:radius=1.0:max_points=12:min_points=0:nodata=0.0",
        format="GTiff",
        outputType=gdal.GDT_Float32,
        zfield="WAVEHEIGHT")
    gdal.Grid(destName=output_file, srcDS=point_station_file, options=opts)
示例#2
0
    def interpolation(shp_path, out_tiff_path, z_field='value', method='idw', cell_size=None, output_bounds=None,
                      algo_str=None, outputType=None, res_format= 'GTiff'):
        """
        插值,反距离加权(idw),最邻近(nearest),移动均值(average)
        :param shp_path: 用于插值的点 shp 路径
        :param out_tiff_path: 输出的 tiff 路径
        :param z_field:  插值使用的字段
        :param method:  插值方法
        :param cell_size:  插值后的 tiff 的分辨率
        :param output_bounds:  插值输出范围(x_min, y_min, x_max, y_max)
        :param algo_str: 算法参数设置
        :param outputType: 输出数据类型,如 gdal.GDT_Float64
        :param res_format: 返回类型, GTiff 输出为文件, MEM 输出为临时文件
        :return: None
        """
        # ------------------------------------------------------------------------------------------------------------------
        # 算法描述字符串
        if method == 'idw' and algo_str is None:
            algo_str = "invdist:power=2.0:smoothing=0.0:radius1=0.0:radius2=0.0:angle=0.0:" \
                       "max_points=0:min_points=0:nodata=0.0"
        elif method == 'average' and algo_str is None:
            # algo_str = "average:radius1=0.0:radius2=0.0:angle=0.0:min_points=0:nodata=0.0"
            raise TypeError('not support yet')
        elif method == 'nearest':
            # algo_str = "minimum={0}:maximum={1}:range={2}:count={3}:average_distance={4}:average_distance_pts={5}"
            raise TypeError('not support yet')
        elif method in ['idw', 'average', 'nearest']:
            algo_str = algo_str
        else:
            raise ValueError('method can only be : idw | average | nearest')
        # ------------------------------------------------------------------------------------------------------------------
        # 根据 cell_size 得到长宽
        if cell_size is None:
            width, height = None, None
        else:
            if output_bounds:
                x_min, y_min, x_max, y_max = output_bounds
                width, height = int((x_max - x_min) / float(cell_size)), int((y_max - y_min) / float(cell_size))
            else:
                # width, height = None, None   # 获取 point 的范围,得到当前点的范围
                raise ValueError('warning : 当未输入 outputBounds 时,cell_size 的设置无效')
        # ------------------------------------------------------------------------------------------------------------------
        grid_option = gdal.GridOptions(algorithm=algo_str, zfield=z_field, outputBounds=output_bounds, width=width,
                                       height=height, outputType=outputType, format=res_format)  # 设置算法和插值所用的字段

        gdal.Grid(out_tiff_path, shp_path, options=grid_option)  # 插值
示例#3
0
def gdal_grid_image_band(
        image_to_warp,  # type: ndarray
        output_fname,  # type: str
        image_x_coords,  # type: ndarray
        image_y_coords,  # type: ndarray
        npix_x,  # type: int
        npix_y,  # type: int
        projection_wkt,  # type: str
        nodata_val=0  # type: int
):  # type:

    fileformat = "MEMORY"
    driver = ogr.GetDriverByName(fileformat)
    ys, xs = image_to_warp.size

    datasource = driver.CreateDataSource('memData')
    datasource.SetProjection(projection_wkt)

    layer = datasource.CreateLayer('image', geom_type=ogr.wkbPoint)
    layer.CreateField(ogr.FieldDefn("Z", ogr.OFTReal))

    for i in range(xs):
        for j in range(ys):
            feature = ogr.Feature(layer.GetLayerDefn())
            point = ogr.Geometry(ogr.wkbPoint)
            point.AddPoint(image_x_coords[j, i], image_y_coords[j, i])
            feature.SetGeometry(point)

            feature.SetField("Z", image_to_warp[j, i])

            layer.CreateFeature(feature)
            feature = None

    dst_fname = output_fname

    ops = gdal.GridOptions(width=npix_x, height=npix_y, noData=nodata_val)

    dst_dataset = gdal.Grid(dst_fname, datasource, options=ops)
    src_dataset = None
    dst_dataset = None

    print("done")
示例#4
0
def main(raster_path):
    os.chdir(os.path.join('Source_Data', "DEM_rasters"))

    latlon_crs = '+proj = longlat +ellps = WGS84 +datum = WGS84 +no_defs'

    data_path = os.path.join(orig_dir, 'intermediate_data',
                             'R_download_recs.txt')

    crs = None
    files = sorted([f for f in os.listdir() if f[-4:] == '.img'])
    with progress_saver(data_path) as dic:
        for file in files[dic['i']:]:
            try:
                with rasterio.open(file) as r:
                    if not crs:
                        crs = r.crs
                    print(dic['i'])
                    coords = (r.bounds[0], r.bounds[-1])
                    gdf_point = gpd.GeoDataFrame(geometry=[Point(*coords)])
                    gdf_point.crs = crs
                    point = gdf_point.to_crs(latlon_crs).geometry.iloc[0]
                    res = json.loads(get_R_fac((point.x, point.y)))['rfactor']
                    dic['data'].append({
                        'x': coords[0],
                        'y': coords[1],
                        'r_factor': res
                    })
                    time.sleep(2)
            except rasterio.RasterioIOError:
                pass
            dic['i'] += 1
    if not crs:
        crs = rasterio.open(files[0]).crs

    #to do: turn data into grid, and interpolate missing values.

    data = dic['data']

    data = [r for r in data if r['x'] != 0]

    points = [(round(r['x'], 2), round(r['y'], 2)) for r in data]
    values = [r['r_factor'] for r in data]

    n_x = len(set([r['x'] for r in data]))
    n_y = len(set([r['y'] for r in data]))

    xmin = min([p[0] for p in points])
    xmax = max([p[0] for p in points])
    ymin = min([p[1] for p in points])
    ymax = max([p[1] for p in points])

    cell_y = (ymax - ymin) / n_y
    cell_x = (xmax - xmin) / n_x

    gdf = gpd.GeoDataFrame(values,
                           geometry=gpd.points_from_xy([d[0] for d in points],
                                                       [d[1] for d in points]))
    gdf.rename(columns={0: 'r_factor'}, inplace=True)
    #gdf['r_factor'] = gdf['r_factor'].fillna(-9999)

    gdf.crs = crs
    os.chdir('..')
    os.chdir('..')

    shp_path = os.path.join('intermediate_data', 'rfactor_points')
    gdf.to_file(shp_path)

    options = gdal.GridOptions(
        height=n_x,
        width=n_y,
        zfield='r_factor',
        outputType=gdal.GDT_Float32,
    )
    ds = gdal.Grid(
        raster_path,
        shp_path,
        options=options,
    )
    def analysisTest(self, cancer_file, nitrate_file, out_dir, IDW_value):
        print('Running the IDW Interpolation')
        # wPath = '/Users/Sigfrido/Documents/project1/geospatialProject1/data/files/well_nitrate/'

        #take the file path from the gui and fun the analysis
        cancerTract = str(cancer_file)
        wellNitrate = str(nitrate_file)
        oPath = str(out_dir)
        IDW = IDW_value

        #files created during the analysis

        oTiff = '/test.tiff'
        #rasterOutput IDW
        wIDWresult = oPath + oTiff
        #Raster2Polygon
        rPolyShape = '/wellsPolygon.shp'
        #raster2CSV
        cPolyShape = '/wellsPoint.csv'
        #csv2pointsShape
        pPolyShape = '/wellsPoints.shp'
        #Polygon Results
        pResults = oPath + rPolyShape
        #CSVresults
        cResults = oPath + cPolyShape
        #csv2Points
        shpPntResults = oPath + pPolyShape

        nitrate_IDW = 'IDW_Results.shp'

        nitrate_IDW_results = oPath + nitrate_IDW
        #######################################################################################
        file = ogr.Open(wellNitrate)
        # print(file)
        shape = file.GetLayer(0)
        #first feature of the shapefile
        feature = shape.GetFeature(0)
        #print(feature)
        first = feature.ExportToJson()

        #######################################################################################
        #1 Nitrate levels should use Spatial Interpolation Inverse Weighted Method (IDW)

        print('starting the GDAL Interpolation')
        # option = gdal.GridOptions(format='GTiff',algorithm='invdist:power={0}'.format(IDW),outputSRS='EPSG:4326',zfield='nitr_ran')
        option = gdal.GridOptions(format='GTiff',
                                  algorithm='invdist:power={0}'.format(IDW),
                                  zfield='nitr_ran')

        out = gdal.Grid(
            wIDWresult,  #results
            wellNitrate,  #shapefile
            options=option)  #options

        # out.FlushCache()
        out = None
        del out
        #convert to a CSV
        print("converting out to CSV for next step")
        os.system(
            "gdal_translate -of xyz -co ADD_HEADER_LINE=YES -co COLUMN_SEPARATOR=',' {0} {1}"
            .format(wIDWresult, cResults))

        print("converting CSV to Shapefile using FIONA")
        import csv
        from shapely.geometry import Point, mapping
        from fiona import collection

        schema = {'geometry': 'Point', 'properties': {'Z': 'float'}}
        with collection(shpPntResults, "w", "ESRI Shapefile",
                        schema) as output:
            with open(cResults, 'r') as f:
                reader = csv.DictReader(f)

                for row in reader:
                    point = Point(float(row['X']), float(row['Y']))
                    output.write({
                        'properties': {
                            'Z': row['Z']
                        },
                        'geometry': mapping(point)
                    })
        #######################################################################################
        #2  Aggregated Points(well data ) to census tract information

        print("Aggregating Points to Census Tract Shapefile")
        cancerFile = gpd.read_file(cancerTract)
        wellPointsShape = gpd.read_file(shpPntResults)
        #print(wellPointsShape.head())`
        cancerFile.crs = wellPointsShape.crs
        wellPointsShape = wellPointsShape.rename(columns={'Z': 'NewNitrate'})

        print(
            "Using geopandas to join Cancer Census Tracts with Well Points Shapefile"
        )
        join = gpd.sjoin(cancerFile, wellPointsShape, how="left")

        # Save to disk
        join.to_file(nitrate_IDW_results)
        #prints file path
        # print(nitrate_IDW_results)#not needed
        print("Building The Regression Residuals Results Map")
        self.results_residual_map()
        print("Analysis Complete")
示例#6
0
    def ptsTime2Raster(self,
                       out_name,
                       var_list=None,
                       outputBounds=None,
                       outCRS='WGS84',
                       mask_shp=None,
                       buffer_mask=0):
        '''
        This method convert points time series in rasters data series by linear interpolation.
        
        input:
            :param out_name  = output name base name
                If out_name = 'D:/output/dir/path/raster_name.tif',this implies that the output 
                raster file names will have the following format: 
                'D:/output/dir/path/raster_name_time_stamp_variable_name.tif')
                
            :param var_list (optional) = variables list to convert in rasters files.
                If not informed, all available variables in dataset will be converted.
                
           
            :param outputBounds (optional) = is set as a list instance with the following format: 
                
                [upperLeft Longitude, upperLeft Latitude, lowerRight Longitude, lowerRight Latitude]
                
                This defines the interpolation area in a rectangle delimited by its upper left point 
                coordinates and lower right point coordinates.
                
                default value: the rectangle area is defined by upper left and lower right dataset 
                coordinates increased by 1%.
                
                
            :param outCRS (optional) = output Coordinate Reference System.
                                        default value: WGS84.
            
            :param mask_shp (optional) = If informed, the interpolation raster is croped to shapefile boundaries.
            
            :param buffer_mask (optional) = buffer in shapefile mask area ( in %percentage).
                                            It is only used if the mask shapefile is inserted.
                                            default value: 0%.
        
        output:
            return: multiples raster files ( format .tif)
        
        '''

        if not var_list:
            var_list = self._data.columns.drop(
                ['latitude', 'longitude', 'geometry'], errors='ignore')

        if not outputBounds:
            geom = self._data.geometry.drop_duplicates()
            x1 = geom.x.max()
            x2 = geom.x.min()
            y1 = geom.y.max()
            y2 = geom.y.min()

            if x1 * x2 >= 0:
                if abs(x1) < abs(x2):
                    aux = x1
                    x1 = x2
                    x2 = aux
            if y1 * y2 >= 0:
                if abs(y1) < abs(y2):
                    aux = y1
                    y1 = y2
                    y2 = aux

#            outputBounds = [x*1.02 for x in [geom.x.max(), geom.y.min(), geom.x.min(), geom.y.max()]]
            outputBounds = [x1, y2, x2, y1]

        if '.tif' in out_name:
            out_name = out_name.replace('.tif', '')

        if mask_shp:
            mask_shp = gpd.GeoDataFrame.from_file(mask_shp)

        out_dir = '\\'.join(out_name.split('\\')[:-1])
        timeSteps = self._data.sort_index().index.drop_duplicates()

        for time in timeSteps:
            timeName = str(time).replace(' ',
                                         '_').replace('-',
                                                      '_').replace(':', '_')

            for varName in var_list:
                vrt_fn = os.path.join(out_dir, varName + 'Vrt.vrt')
                lyr_name = varName
                out_tif = '_'.join([out_name, varName, timeName, '.tif'])
                tempPath = os.path.join(out_dir, varName + '.csv')
                self._data[[varName, 'latitude',
                            'longitude']].loc[time].to_csv(tempPath,
                                                           header=True,
                                                           index=False)

                with open(vrt_fn, 'w') as fn_vrt:
                    fn_vrt.write('<OGRVRTDataSource>\n')
                    fn_vrt.write('\t<OGRVRTLayer name="%s">\n' % lyr_name)
                    fn_vrt.write('\t\t<SrcDataSource>%s</SrcDataSource>\n' %
                                 tempPath)
                    fn_vrt.write('\t\t<SrcLayer>%s</SrcLayer>\n' % lyr_name)
                    fn_vrt.write('\t\t<GeometryType>wkbPoint</GeometryType>\n')
                    fn_vrt.write(
                        '\t\t<GeometryField encoding="PointFromColumns" x="longitude" y="latitude" z="%s"/>\n'
                        % varName)
                    fn_vrt.write('\t</OGRVRTLayer>\n')
                    fn_vrt.write('</OGRVRTDataSource>\n')

                gridOp = gdal.GridOptions(
                    format='Gtiff',
                    outputBounds=outputBounds,
                    algorithm='linear:radius=0.0:nodata = -9999',
                    outputSRS=outCRS)

                if isinstance(mask_shp, gpd.GeoDataFrame):
                    temp_tif = out_name + '_' + varName + '.tif'
                    gdal.Grid(temp_tif, vrt_fn, options=gridOp)
                    self._cropRst(temp_tif,
                                  mask_shp,
                                  out_tif,
                                  remove=True,
                                  buffer_mask=buffer_mask)
                else:
                    gdal.Grid(out_tif, vrt_fn, options=gridOp)

                os.remove(tempPath)
                os.remove(vrt_fn)
        return