def pixel_rating(image_ws, ini_path, stats_flag=False, overwrite_flag=None):
    """Calculate pixel rating

    Args:
        image_ws (str): Image folder path
        ini_path (str): Pixel regions config file path
        stats_flag (bool): if True, compute raster statistics
        ovewrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('Generating suggested hot/cold pixel regions')
    log_fmt = '  {:<18s} {}'

    env = gdc.env
    image = et_image.Image(image_ws, env)
    np.seterr(invalid='ignore')

    # # Check  that image_ws is valid
    # image_re = re.compile(
    #     '^(LT04|LT05|LE07|LC08)_(\d{3})(\d{3})_(\d{4})(\d{2})(\d{2})')
    # if not os.path.isdir(image_ws) or not image_re.match(scene_id):
    #     logging.error('\nERROR: Image folder is invalid or does not exist\n')
    #     return False

    # Folder Paths
    region_ws = os.path.join(image_ws, 'PIXEL_REGIONS')

    # Open config file
    config = open_ini(ini_path)

    # Get input parameters
    logging.debug('  Reading Input File')
    # Arrays are processed by block
    bs = read_param('block_size', 1024, config)
    logging.info('  {:<18s} {}'.format('Block Size:', bs))

    # Raster pyramids/statistics
    pyramids_flag = read_param('pyramids_flag', False, config)
    if pyramids_flag:
        gdal.SetConfigOption('HFA_USE_RRD', 'YES')
    if stats_flag is None:
        stats_flag = read_param('statistics_flag', False, config)

    # Overwrite
    if overwrite_flag is None:
        overwrite_flag = read_param('overwrite_flag', True, config)

    # Check that common_area raster exists
    if not os.path.isfile(image.common_area_raster):
        logging.error(
            '\nERROR: A common area raster was not found.' +
            '\nERROR: Please rerun prep tool to build these files.\n' +
            '    {}\n'.format(image.common_area_raster))
        sys.exit()

    # Use common_area to set mask parameters
    common_ds = gdal.Open(image.common_area_raster)
    # env.mask_proj = raster_ds_proj(common_ds)
    env.mask_geo = gdc.raster_ds_geo(common_ds)
    env.mask_rows, env.mask_cols = gdc.raster_ds_shape(common_ds)
    env.mask_extent = gdc.geo_extent(env.mask_geo, env.mask_rows,
                                     env.mask_cols)
    env.mask_array = gdc.raster_ds_to_array(common_ds)[0]
    env.mask_path = image.common_area_raster
    env.snap_osr = gdc.raster_path_osr(image.common_area_raster)
    env.snap_proj = env.snap_osr.ExportToWkt()
    env.cellsize = gdc.raster_path_cellsize(image.common_area_raster)[0]
    common_ds = None
    logging.debug('  {:<18s} {}'.format('Mask Extent:', env.mask_extent))

    # Read Pixel Regions config file
    # Currently there is no code to support applying an NLCD mask
    apply_nlcd_mask = False
    # apply_nlcd_mask = read_param('apply_nlcd_mask', False, config)
    apply_cdl_ag_mask = read_param('apply_cdl_ag_mask', False, config)
    apply_field_mask = read_param('apply_field_mask', False, config)
    apply_ndwi_mask = read_param('apply_ndwi_mask', True, config)
    apply_ndvi_mask = read_param('apply_ndvi_mask', True, config)
    # Currently the code to apply a study area mask is commented out
    # apply_study_area_mask = read_param(
    #     'apply_study_area_mask', False, config)

    albedo_rating_flag = read_param('albedo_rating_flag', True, config)
    nlcd_rating_flag = read_param('nlcd_rating_flag', True, config)
    ndvi_rating_flag = read_param('ndvi_rating_flag', True, config)
    ts_rating_flag = read_param('ts_rating_flag', True, config)
    ke_rating_flag = read_param('ke_rating_flag', False, config)

    # if apply_study_area_mask:
    #     study_area_path = config.get('INPUTS', 'study_area_path')
    if apply_nlcd_mask or nlcd_rating_flag:
        nlcd_raster = config.get('INPUTS', 'landuse_raster')
    if apply_cdl_ag_mask:
        cdl_ag_raster = config.get('INPUTS', 'cdl_ag_raster')
        cdl_buffer_cells = read_param('cdl_buffer_cells', 0, config)
        cdl_ag_eroded_name = read_param('cdl_ag_eroded_name',
                                        'cdl_ag_eroded_{}.img', config)
    if apply_field_mask:
        field_raster = config.get('INPUTS', 'fields_raster')

    cold_rating_pct = read_param('cold_percentile', 99, config)
    hot_rating_pct = read_param('hot_percentile', 99, config)
    # min_cold_rating_score = read_param('min_cold_rating_score', 0.3, config)
    # min_hot_rating_score = read_param('min_hot_rating_score', 0.3, config)

    ts_bin_count = int(read_param('ts_bin_count', 10, config))
    if 100 % ts_bin_count != 0:
        logging.warning(
            'WARNING: ts_bins_count of {} is not a divisor ' +
            'of 100. Using default ts_bins_count = 4'.format(ts_bin_count))
        ts_bin_count = 10
    bin_size = 1. / (ts_bin_count - 1)
    hot_rating_values = np.arange(0., 1. + bin_size, step=bin_size)
    cold_rating_values = hot_rating_values[::-1]

    # Input raster paths
    r_fmt = '.img'
    if 'Landsat' in image.type:
        albedo_raster = image.albedo_sur_raster
        ndvi_raster = image.ndvi_toa_raster
        ndwi_raster = image.ndwi_toa_raster
        ts_raster = image.ts_raster
        ke_raster = image.ke_raster

    # Check config file input paths
    # if apply_study_area_mask and not os.path.isfile(study_area_path):
    #     logging.error(
    #         ('\nERROR: The study area shapefile {} does ' +
    #             'not exist\n').format(study_area_path))
    #     sys.exit()
    if ((apply_nlcd_mask or nlcd_rating_flag)
            and not os.path.isfile(nlcd_raster)):
        logging.error(('\nERROR: The NLCD raster {} does ' +
                       'not exist\n').format(nlcd_raster))
        sys.exit()
    if apply_cdl_ag_mask and not os.path.isfile(cdl_ag_raster):
        logging.error(('\nERROR: The CDL Ag raster {} does ' +
                       'not exist\n').format(cdl_ag_raster))
        sys.exit()
    if apply_field_mask and not os.path.isfile(field_raster):
        logging.error(('\nERROR: The field raster {} does ' +
                       'not exist\n').format(field_raster))
        sys.exit()
    if (not (isinstance(cold_rating_pct,
                        (int, float)) and (0 <= cold_rating_pct <= 100))):
        logging.error(
            '\nERROR: cold_percentile must be a value between 0 and 100\n')
        sys.exit()
    if (not (isinstance(hot_rating_pct,
                        (int, float)) and (0 <= hot_rating_pct <= 100))):
        logging.error(
            '\nERROR: hot_percentile must be a value between 0 and 100\n')
        sys.exit()

    # Set raster names
    raster_dict = dict()

    # Output Rasters
    raster_dict['region_mask'] = os.path.join(region_ws, 'region_mask' + r_fmt)
    raster_dict['cold_rating'] = os.path.join(region_ws,
                                              'cold_pixel_rating' + r_fmt)
    raster_dict['hot_rating'] = os.path.join(region_ws,
                                             'hot_pixel_rating' + r_fmt)
    raster_dict['cold_sugg'] = os.path.join(region_ws,
                                            'cold_pixel_suggestion' + r_fmt)
    raster_dict['hot_sugg'] = os.path.join(region_ws,
                                           'hot_pixel_suggestion' + r_fmt)

    # Read pixel region raster flags
    save_dict = dict()
    save_dict['region_mask'] = read_param('save_region_mask_flag', False,
                                          config)
    save_dict['cold_rating'] = read_param('save_rating_rasters_flag', False,
                                          config)
    save_dict['hot_rating'] = read_param('save_rating_rasters_flag', False,
                                         config)
    save_dict['cold_sugg'] = read_param('save_suggestion_rasters_flag', True,
                                        config)
    save_dict['hot_sugg'] = read_param('save_suggestion_rasters_flag', True,
                                       config)

    # Output folder
    if not os.path.isdir(region_ws):
        os.mkdir(region_ws)

    # Remove existing files if necessary
    region_ws_file_list = [
        os.path.join(region_ws, item) for item in os.listdir(region_ws)
    ]
    if overwrite_flag and region_ws_file_list:
        for raster_path in raster_dict.values():
            if raster_path in region_ws_file_list:
                remove_file(raster_path)

    # Check scene specific input paths
    if apply_ndwi_mask and not os.path.isfile(ndwi_raster):
        logging.error(
            'ERROR: NDWI raster does not exist\n {}'.format(ndwi_raster))
        sys.exit()
    elif apply_ndvi_mask and not os.path.isfile(ndvi_raster):
        logging.error(
            'ERROR: NDVI raster does not exist\n {}'.format(ndvi_raster))
        sys.exit()
    elif ke_rating_flag and not os.path.isfile(ke_raster):
        logging.error(
            ('ERROR: The Ke raster does not exist\n {}').format(ke_raster))
        sys.exit()

    # Remove existing and build new empty rasters if necessary
    # If processing by block, rating rasters must be built
    logging.debug('\nBuilding empty rasters')
    for name, save_flag in sorted(save_dict.items()):
        if save_flag and 'rating' in name:
            gdc.build_empty_raster(raster_dict[name], 1, np.float32)
        elif save_flag:
            gdc.build_empty_raster(raster_dict[name],
                                   1,
                                   np.uint8,
                                   output_nodata=0)

    if apply_cdl_ag_mask:
        logging.info('Building CDL ag mask')
        cdl_array = gdc.raster_to_array(cdl_ag_raster,
                                        mask_extent=env.mask_extent,
                                        return_nodata=False)
        if cdl_buffer_cells > 0:
            logging.info('  Eroding CDL by {} cells'.format(cdl_buffer_cells))
            structure_array = np.ones((cdl_buffer_cells, cdl_buffer_cells),
                                      dtype=np.int)
            # Deadbeef - This could blow up in memory on bigger rasters
            cdl_array = ndimage.binary_erosion(
                cdl_array, structure_array).astype(structure_array.dtype)
        cdl_ag_eroded_raster = os.path.join(
            image.support_ws, cdl_ag_eroded_name.format(cdl_buffer_cells))
        gdc.array_to_raster(cdl_array,
                            cdl_ag_eroded_raster,
                            output_geo=env.mask_geo,
                            output_proj=env.snap_proj,
                            mask_array=env.mask_array,
                            output_nodata=0,
                            stats_flag=False)
        cdl_array = None
        del cdl_array

    # Build region mask
    logging.debug('Building region mask')
    region_mask = np.copy(env.mask_array).astype(np.bool)
    if apply_field_mask:
        field_mask, field_nodata = gdc.raster_to_array(
            field_raster, mask_extent=env.mask_extent, return_nodata=True)
        region_mask &= field_mask != field_nodata
        del field_mask, field_nodata
    if apply_ndwi_mask:
        ndwi_array = gdc.raster_to_array(ndwi_raster,
                                         1,
                                         mask_extent=env.mask_extent,
                                         return_nodata=False)
        region_mask &= ndwi_array > 0.0
        del ndwi_array
    if apply_ndvi_mask:
        ndvi_array = gdc.raster_to_array(ndvi_raster,
                                         1,
                                         mask_extent=env.mask_extent,
                                         return_nodata=False)
        region_mask &= ndvi_array > 0.12
        del ndvi_array
    if apply_cdl_ag_mask:
        cdl_array, cdl_nodata = gdc.raster_to_array(
            cdl_ag_eroded_raster,
            mask_extent=env.mask_extent,
            return_nodata=True)
        region_mask &= cdl_array != cdl_nodata
        del cdl_array, cdl_nodata
    if save_dict['region_mask']:
        gdc.array_to_raster(region_mask,
                            raster_dict['region_mask'],
                            stats_flag=False)

    # Initialize rating arrays
    # This needs to be done before the ts_rating if block
    cold_rating_array = np.ones(env.mask_array.shape, dtype=np.float32)
    hot_rating_array = np.ones(env.mask_array.shape, dtype=np.float32)
    cold_rating_array[~region_mask] = np.nan
    hot_rating_array[~region_mask] = np.nan

    # Temperature pixel rating - grab the max and min value for the entire
    #  Ts image in a memory safe way by using gdal_common blocks
    # The following is a percentile based approach
    if ts_rating_flag:
        logging.debug('Computing Ts percentile rating')
        ts_array = gdc.raster_to_array(ts_raster,
                                       mask_extent=env.mask_extent,
                                       return_nodata=False)
        ts_array[~region_mask] = np.nan

        percentiles = range(0, (100 + ts_bin_count), int(100 / ts_bin_count))
        ts_score_value = 1. / (ts_bin_count - 1)
        hot_rating_values = np.arange(0, (1. + ts_score_value),
                                      step=ts_score_value)[:ts_bin_count]
        cold_rating_values = hot_rating_values[::-1]
        ts_percentile_array = stats.scoreatpercentile(
            ts_array[np.isfinite(ts_array)], percentiles)

        for bins_i in range(len(ts_percentile_array))[:-1]:
            bool_array = ((ts_array > ts_percentile_array[bins_i]) &
                          (ts_array <= ts_percentile_array[bins_i + 1]))
            cold_rating_array[bool_array] = cold_rating_values[bins_i]
            hot_rating_array[bool_array] = hot_rating_values[bins_i]
        # gdc.array_to_raster(cold_rating_array, raster_dict['cold_rating'])
        # gdc.array_to_raster(hot_rating_array, raster_dict['hot_rating'])

        # Cleanup
        del ts_array, ts_percentile_array
        del cold_rating_values, hot_rating_values
        del ts_score_value, percentiles

    # Process by block
    logging.info('\nProcessing by block')
    logging.debug('  Mask  cols/rows: {}/{}'.format(env.mask_cols,
                                                    env.mask_rows))
    for b_i, b_j in gdc.block_gen(env.mask_rows, env.mask_cols, bs):
        logging.debug('  Block  y: {:5d}  x: {:5d}'.format(b_i, b_j))
        block_data_mask = gdc.array_to_block(env.mask_array, b_i, b_j,
                                             bs).astype(np.bool)
        # block_nodata_mask = ~block_data_mask
        block_rows, block_cols = block_data_mask.shape
        block_geo = gdc.array_offset_geo(env.mask_geo, b_j, b_i)
        block_extent = gdc.geo_extent(block_geo, block_rows, block_cols)
        logging.debug('    Block rows: {}  cols: {}'.format(
            block_rows, block_cols))
        # logging.debug('    Block extent: {}'.format(block_extent))
        # logging.debug('    Block geo: {}'.format(block_geo))

        # Don't skip empty blocks since block rating needs to be written
        #  back to the array at the end of the block loop
        block_region_mask = gdc.array_to_block(region_mask, b_i, b_j, bs)
        if not np.any(block_region_mask):
            logging.debug('    Empty block')
            block_empty_flag = True
        else:
            block_empty_flag = False

        # New style continuous pixel weighting
        cold_rating_block = gdc.array_to_block(cold_rating_array, b_i, b_j, bs)
        hot_rating_block = gdc.array_to_block(hot_rating_array, b_i, b_j, bs)

        # Rating arrays already have region_mask set
        # cold_rating_block = np.ones(block_region_mask.shape, dtype=np.float32)
        # hot_rating_block = np.ones(block_region_mask.shape, dtype=np.float32)
        # cold_rating_block[~block_region_mask] = np.nan
        # hot_rating_block[~block_region_mask] = np.nan
        # del block_region_mask

        if ndvi_rating_flag and not block_empty_flag:
            # NDVI based rating
            ndvi_array = gdc.raster_to_array(ndvi_raster,
                                             1,
                                             mask_extent=block_extent,
                                             return_nodata=False)
            # Don't let NDVI be negative
            ndvi_array.clip(0., 0.833, out=ndvi_array)
            # ndvi_array.clip(0.001, 0.833, out=ndvi_array)
            cold_rating_block *= ndvi_array
            cold_rating_block *= 1.20
            ndvi_mask = (ndvi_array > 0)
            # DEADBEEF - Can this calculation be masked to only NDVI > 0?
            ndvi_mask = ndvi_array > 0
            hot_rating_block[ndvi_mask] *= stats.norm.pdf(
                np.log(ndvi_array[ndvi_mask]), math.log(0.15), 0.5)
            hot_rating_block[ndvi_mask] *= 1.25
            del ndvi_mask
            # hot_rating_block *= stats.norm.pdf(
            #     np.log(ndvi_array), math.log(0.15), 0.5)
            # hot_rating_block *= 1.25
            # cold_rating_block.clip(0., 1., out=cold_rating_block)
            # hot_rating_block.clip(0., 1., out=hot_rating_block)
            del ndvi_array

        if albedo_rating_flag and not block_empty_flag:
            # Albdo based rating
            albedo_array = gdc.raster_to_array(albedo_raster,
                                               1,
                                               mask_extent=block_extent,
                                               return_nodata=False)
            albedo_cold_pdf = stats.norm.pdf(albedo_array, 0.21, 0.03)
            albedo_hot_pdf = stats.norm.pdf(albedo_array, 0.21, 0.06)
            del albedo_array
            cold_rating_block *= albedo_cold_pdf
            cold_rating_block *= 0.07
            hot_rating_block *= albedo_hot_pdf
            hot_rating_block *= 0.15
            # cold_rating_block.clip(0., 1., out=cold_rating_block)
            # hot_rating_block.clip(0., 1., out=hot_rating_block)
            del albedo_cold_pdf, albedo_hot_pdf

        if nlcd_rating_flag and not block_empty_flag:
            # NLCD based weighting, this could be CDL instead?
            nlcd_array = nlcd_rating(
                gdc.raster_to_array(nlcd_raster,
                                    1,
                                    mask_extent=block_extent,
                                    return_nodata=False))
            cold_rating_block *= nlcd_array
            hot_rating_block *= nlcd_array
            del nlcd_array

        if ke_rating_flag and not block_empty_flag:
            # SWB Ke based rating
            ke_array = gdc.raster_to_array(ke_raster,
                                           1,
                                           mask_extent=block_extent,
                                           return_nodata=False)
            # Don't let NDVI be negative
            ke_array.clip(0., 1., out=ke_array)
            # Assumption, lower Ke is better for selecting the hot pixel
            # As the power (2) decreases and approaches 1,
            #   the relationship gets more linear
            # cold_rating_block *= (1 - ke_array ** 2)
            # hot_rating_block *= (1 - ke_array ** 1.5)
            # Linear inverse
            # cold_rating_block *= (1. - ke_array)
            hot_rating_block *= (1. - ke_array)
            # cold_rating_block.clip(0., 1., out=cold_rating_block)
            # hot_rating_block.clip(0., 1., out=hot_rating_block)
            del ke_array

        # Clearness
        # clearness = 1.0
        # cold_rating *= clearness
        # hot_rating *= clearness

        # Reset nan values
        # cold_rating_block[~region_mask] = np.nan
        # hot_rating_block[~region_mask] = np.nan

        # Save rating values
        cold_rating_array = gdc.block_to_array(cold_rating_block,
                                               cold_rating_array, b_i, b_j, bs)
        hot_rating_array = gdc.block_to_array(hot_rating_block,
                                              hot_rating_array, b_i, b_j, bs)

        # Save rating rasters
        if save_dict['cold_rating']:
            gdc.block_to_raster(cold_rating_block, raster_dict['cold_rating'],
                                b_i, b_j, bs)
        if save_dict['hot_rating']:
            gdc.block_to_raster(hot_rating_block, raster_dict['hot_rating'],
                                b_i, b_j, bs)
        # Save rating values
        cold_rating_array = gdc.block_to_array(cold_rating_block,
                                               cold_rating_array, b_i, b_j, bs)
        hot_rating_array = gdc.block_to_array(hot_rating_block,
                                              hot_rating_array, b_i, b_j, bs)

        del cold_rating_block, hot_rating_block

    # Select pixels above target percentile
    # Only build suggestion arrays if saving
    logging.debug('Building suggested pixel rasters')
    if save_dict['cold_sugg']:
        cold_rating_score = float(
            stats.scoreatpercentile(
                cold_rating_array[np.isfinite(cold_rating_array)],
                cold_rating_pct))
        # cold_rating_array, cold_rating_nodata = gdc.raster_to_array(
        #     raster_dict['cold_rating'], 1, mask_extent=env.mask_extent)
        # if cold_rating_score < float(min_cold_rating_score):
        #     logging.error(('ERROR: The cold_rating_score ({}) is less ' +
        #                    'than the min_cold_rating_score ({})').format(
        #                     cold_rating_score, min_cold_rating_score))
        #     sys.exit()
        cold_sugg_mask = cold_rating_array >= cold_rating_score
        gdc.array_to_raster(cold_sugg_mask,
                            raster_dict['cold_sugg'],
                            stats_flag=stats_flag)
        logging.debug('  Cold Percentile: {}'.format(cold_rating_pct))
        logging.debug('  Cold Score:  {:.6f}'.format(cold_rating_score))
        logging.debug('  Cold Pixels: {}'.format(np.sum(cold_sugg_mask)))
        del cold_sugg_mask, cold_rating_array
    if save_dict['hot_sugg']:
        hot_rating_score = float(
            stats.scoreatpercentile(
                hot_rating_array[np.isfinite(hot_rating_array)],
                hot_rating_pct))
        # hot_rating_array, hot_rating_nodata = gdc.raster_to_array(
        #     raster_dict['hot_rating'], 1, mask_extent=env.mask_extent)
        # if hot_rating_score < float(min_hot_rating_score):
        #     logging.error(('ERROR: The hot_rating_array ({}) is less ' +
        #                    'than the min_hot_rating_score ({})').format(
        #                     hot_rating_array, min_hot_rating_score))
        #     sys.exit()
        hot_sugg_mask = hot_rating_array >= hot_rating_score
        gdc.array_to_raster(hot_sugg_mask,
                            raster_dict['hot_sugg'],
                            stats_flag=stats_flag)
        logging.debug('  Hot Percentile: {}'.format(hot_rating_pct))
        logging.debug('  Hot Score:  {:.6f}'.format(hot_rating_score))
        logging.debug('  Hot Pixels: {}'.format(np.sum(hot_sugg_mask)))
        del hot_sugg_mask, hot_rating_array

    # Raster Statistics
    if stats_flag:
        logging.info('Calculating Statistics')
        for name, save_flag in save_dict.items():
            if save_flag:
                gdc.raster_statistics(raster_dict[name])
    # Raster Pyramids
    if pyramids_flag:
        logging.info('Building Pyramids')
        for name, save_flag in save_dict.items():
            if save_flag:
                gdc.raster_pyramids(raster_dict[name])
示例#2
0
def main(grb_ws=os.getcwd(), ancillary_ws=os.getcwd(), output_ws=os.getcwd(),
         variables=['pr'], landsat_ws=None,
         start_date=None, end_date=None, times_str='',
         extent_path=None, output_extent=None,
         stats_flag=True, overwrite_flag=False):
    """Extract NLDAS target variable(s)

    Args:
        grb_ws (str): folder of NLDAS GRB files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        variable (list): NLDAS variables to download
          ('ppt', 'srad', 'sph', 'tair', tmmn', 'tmmx', 'vs')
        landsat_ws (str): folder of Landsat scenes or tar.gz files
        start_date (str): ISO format date (YYYY-MM-DD)
        end_date (str): ISO format date (YYYY-MM-DD)
        times (str): comma separated values and/or ranges of UTC hours
            (i.e. "1, 2, 5-8")
            Parsed with python_common.parse_int_set()
        extent_path (str): file path defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nExtract NLDAS target variable(s)')

    # input_fmt = 'NLDAS_FORA0125_H.A{:04d}{:02d}{:02d}.{}.002.grb'
    input_re = re.compile(
        'NLDAS_FORA0125_H.A(?P<YEAR>\d{4})(?P<MONTH>\d{2})' +
        '(?P<DAY>\d{2}).(?P<TIME>\d{4}).002.grb$')

    output_fmt = '{}_{:04d}{:02d}{:02d}_hourly_nldas.img'
    # output_fmt = '{}_{:04d}{:02d}{:02d}_{:04d}_nldas.img'

    # If a date is not set, process 2017
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2017, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2017, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Only process a specific hours
    if not times_str:
        time_list = range(0, 24, 1)
    else:
        time_list = list(parse_int_set(times_str))
    time_list = ['{:02d}00'.format(t) for t in time_list]

    # Assume NLDAS is NAD83
    # input_epsg = 'EPSG:4269'

    # NLDAS rasters to extract
    data_full_list = ['pr', 'srad', 'sph', 'tair', 'tmmn', 'tmmx', 'vs']
    if not variables:
        logging.error('\nERROR: variables parameter is empty\n')
        sys.exit()
    elif type(variables) is not list:
        # DEADBEEF - I could try converting comma separated strings to lists?
        logging.warning('\nERROR: variables parameter must be a list\n')
        sys.exit()
    elif not set(variables).issubset(set(data_full_list)):
        logging.error('\nERROR: variables parameter is invalid\n  {}'.format(
            variables))
        sys.exit()

    # Ancillary raster paths
    mask_path = os.path.join(ancillary_ws, 'nldas_mask.img')

    # Build a date list from landsat_ws scene folders or tar.gz files
    date_list = []
    if landsat_ws is not None and os.path.isdir(landsat_ws):
        logging.info('\nReading dates from Landsat IDs')
        logging.info('  {}'.format(landsat_ws))
        landsat_re = re.compile(
            '^(?:LT04|LT05|LE07|LC08)_(?:\d{3})(?:\d{3})_' +
            '(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})')
        for root, dirs, files in os.walk(landsat_ws, topdown=True):
            # If root matches, don't explore subfolders
            try:
                landsat_match = landsat_re.match(os.path.basename(root))
                date_list.append(dt.datetime.strptime(
                    '_'.join(landsat_match.groups()), '%Y_%m_%d').date().isoformat())
                dirs[:] = []
            except:
                pass

            for file in files:
                try:
                    landsat_match = landsat_re.match(file)
                    date_list.append(dt.datetime.strptime(
                        '_'.join(landsat_match.groups()), '%Y_%m_%d').date().isoformat())
                except:
                    pass
        date_list = sorted(list(set(date_list)))
    # elif landsat_ws is not None and os.path.isfile(landsat_ws):
    #     with open(landsat_ws) as landsat_f:

    # This allows GDAL to throw Python Exceptions
    # gdal.UseExceptions()
    # mem_driver = gdal.GetDriverByName('MEM')

    # Get the NLDAS spatial reference from the mask raster
    nldas_ds = gdal.Open(mask_path)
    nldas_osr = gdc.raster_ds_osr(nldas_ds)
    nldas_proj = gdc.osr_proj(nldas_osr)
    nldas_cs = gdc.raster_ds_cellsize(nldas_ds, x_only=True)
    nldas_extent = gdc.raster_ds_extent(nldas_ds)
    nldas_geo = nldas_extent.geo(nldas_cs)
    nldas_x, nldas_y = nldas_extent.origin()
    nldas_ds = None
    logging.debug('  Projection: {}'.format(nldas_proj))
    logging.debug('  Cellsize: {}'.format(nldas_cs))
    logging.debug('  Geo: {}'.format(nldas_geo))
    logging.debug('  Extent: {}'.format(nldas_extent))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        nldas_extent = gdc.Extent(output_extent)
        nldas_extent.adjust_to_snap('EXPAND', nldas_x, nldas_y, nldas_cs)
        nldas_geo = nldas_extent.geo(nldas_cs)
        logging.debug('  Geo: {}'.format(nldas_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        if extent_path.lower().endswith('.shp'):
            nldas_extent = gdc.feature_path_extent(extent_path)
            extent_osr = gdc.feature_path_osr(extent_path)
            extent_cs = None
        else:
            nldas_extent = gdc.raster_path_extent(extent_path)
            extent_osr = gdc.raster_path_osr(extent_path)
            extent_cs = gdc.raster_path_cellsize(extent_path, x_only=True)
        nldas_extent = gdc.project_extent(
            nldas_extent, extent_osr, nldas_osr, extent_cs)
        nldas_extent.adjust_to_snap('EXPAND', nldas_x, nldas_y, nldas_cs)
        nldas_geo = nldas_extent.geo(nldas_cs)
        logging.debug('  Geo: {}'.format(nldas_geo))
        logging.debug('  Extent: {}'.format(nldas_extent))
    logging.debug('')

    # Read the NLDAS mask array if present
    if mask_path and os.path.isfile(mask_path):
        mask_array, mask_nodata = gdc.raster_to_array(
            mask_path, mask_extent=nldas_extent, fill_value=0,
            return_nodata=True)
        mask_array = mask_array != mask_nodata
    else:
        mask_array = None

    # NLDAS band name dictionary
    nldas_band_dict = dict()
    nldas_band_dict['pr'] = 'Total precipitation [kg/m^2]'
    nldas_band_dict['srad'] = 'Downward shortwave radiation flux [W/m^2]'
    nldas_band_dict['sph'] = 'Specific humidity [kg/kg]'
    nldas_band_dict['tair'] = 'Temperature [C]'
    nldas_band_dict['tmmn'] = 'Temperature [C]'
    nldas_band_dict['tmmx'] = 'Temperature [C]'
    nldas_band_dict['vs'] = [
        'u-component of wind [m/s]', 'v-component of wind [m/s]']

    # NLDAS band name dictionary
    # nldas_band_dict = dict()
    # nldas_band_dict['pr'] = 'precipitation_amount'
    # nldas_band_dict['srad'] = 'surface_downwelling_shortwave_flux_in_air'
    # nldas_band_dict['sph'] = 'specific_humidity'
    # nldas_band_dict['tmmn'] = 'air_temperature'
    # nldas_band_dict['tmmx'] = 'air_temperature'
    # nldas_band_dict['vs'] = 'wind_speed'

    # NLDAS band name dictionary (EarthEngine keys, GRID_ELEMENT values)
    # nldas_band_dict = dict()
    # nldas_band_dict['total_precipitation'] = 'Total precipitation [kg/m^2]'
    # nldas_band_dict['shortwave_radiation'] = 'Downward shortwave radiation flux [W/m^2]'
    # nldas_band_dict['specific_humidity'] = 'Specific humidity [kg/kg]'
    # nldas_band_dict['pressure'] = 'Pressure [Pa]'
    # nldas_band_dict['temperature'] = 'Temperature [C]'
    # nldas_band_dict['wind_u'] = 'u-component of wind [m/s]'
    # nldas_band_dict['wind_v'] = 'v-component of wind [m/s]'

    # Process each variable
    logging.info('\nReading NLDAS GRIBs')
    for input_var in variables:
        logging.info("Variable: {}".format(input_var))

        # Build output folder
        var_ws = os.path.join(output_ws, input_var)
        if not os.path.isdir(var_ws):
            os.makedirs(var_ws)

        # Each sub folder in the main folde has all imagery for 1 day
        # The path for each subfolder is the /YYYY/DOY

        # This approach will process files for target dates
        # for input_dt in date_range(start_dt, end_dt + dt.timedelta(1)):
        #     logging.info(input_dt.date())

        # Iterate all available files and check dates if necessary
        for root, folders, files in os.walk(grb_ws):
            root_split = os.path.normpath(root).split(os.sep)

            # If the year/doy is outside the range, skip
            if (re.match('\d{4}', root_split[-2]) and
                    re.match('\d{3}', root_split[-1])):
                root_dt = dt.datetime.strptime('{}_{}'.format(
                    root_split[-2], root_split[-1]), '%Y_%j')
                logging.info('{}-{:02d}-{:02d}'.format(
                    root_dt.year, root_dt.month, root_dt.day))
                if ((start_dt is not None and root_dt < start_dt) or
                        (end_dt is not None and root_dt > end_dt)):
                    continue
                elif date_list and root_dt.date().isoformat() not in date_list:
                    continue
            # If the year is outside the range, don't search subfolders
            elif re.match('\d{4}', root_split[-1]):
                root_year = int(root_split[-1])
                logging.info('Year: {}'.format(root_year))
                if ((start_dt is not None and root_year < start_dt.year) or
                        (end_dt is not None and root_year > end_dt.year)):
                    folders[:] = []
                else:
                    folders[:] = sorted(folders)
                continue
            else:
                continue

            # Create a single raster for each day with 24 bands
            # Each time step will be stored in a separate band
            output_name = output_fmt.format(
                input_var, root_dt.year, root_dt.month, root_dt.day)
            output_path = os.path.join(
                var_ws, str(root_dt.year), output_name)
            logging.debug('  {}'.format(output_path))
            if os.path.isfile(output_path):
                if not overwrite_flag:
                    logging.debug('    File already exists, skipping')
                    continue
                else:
                    logging.debug('    File already exists, removing existing')
                    os.remove(output_path)
            logging.debug('  {}'.format(root))
            if not os.path.isdir(os.path.dirname(output_path)):
                os.makedirs(os.path.dirname(output_path))
            gdc.build_empty_raster(
                output_path, band_cnt=24, output_dtype=np.float32,
                output_proj=nldas_proj, output_cs=nldas_cs,
                output_extent=nldas_extent, output_fill_flag=True)

            # Iterate through hourly files
            for input_name in sorted(files):
                logging.info('  {}'.format(input_name))
                input_path = os.path.join(root, input_name)
                input_match = input_re.match(input_name)
                if input_match is None:
                    logging.debug(
                        '  Regular expression didn\'t match, skipping')
                    continue
                input_dt = dt.datetime(
                    int(input_match.group('YEAR')),
                    int(input_match.group('MONTH')),
                    int(input_match.group('DAY')))
                time_str = input_match.group('TIME')
                band_num = int(time_str[:2]) + 1
                # if start_dt is not None and input_dt < start_dt:
                #     continue
                # elif end_dt is not None and input_dt > end_dt:
                #     continue
                # elif date_list and input_dt.date().isoformat() not in date_list:
                #     continue
                if time_str not in time_list:
                    logging.debug('    Time not in list, skipping')
                    continue
                logging.debug('    Time: {} {}'.format(
                    input_dt.date(), time_str))
                logging.debug('    Band: {}'.format(band_num))

                # Determine band numbering/naming
                input_band_dict = grib_band_names(input_path)

                # Extract array and save
                input_ds = gdal.Open(input_path)

                # Convert Kelvin to Celsius (old NLDAS files were in K i think)
                if input_var in ['tair', 'tmmx', 'tmmn']:
                    # Temperature should be in C for et_common.refet_hourly_func()
                    if 'Temperature [K]' in input_band_dict.keys():
                        temp_band_units = 'K'
                        output_array = gdc.raster_ds_to_array(
                            input_ds, band=input_band_dict['Temperature [K]'],
                            mask_extent=nldas_extent, return_nodata=False)
                    elif 'Temperature [C]' in input_band_dict.keys():
                        temp_band_units = 'C'
                        output_array = gdc.raster_ds_to_array(
                            input_ds, band=input_band_dict['Temperature [C]'],
                            mask_extent=nldas_extent, return_nodata=False)
                    else:
                        logging.error('Unknown Temperature units, skipping')
                        logging.error('  {}'.format(input_band_dict.keys()))
                        continue

                    # DEADBEEF - Having issue with T appearing to be C but labeled as K
                    # Try to determine temperature units from values
                    temp_mean = float(np.nanmean(output_array))
                    temp_units_dict = {20: 'C', 293: 'K'}
                    temp_array_units = temp_units_dict[
                        min(temp_units_dict, key=lambda x:abs(x - temp_mean))]
                    if temp_array_units == 'K' and temp_band_units == 'K':
                        logging.debug('  Converting temperature from K to C')
                        output_array -= 273.15
                    elif temp_array_units == 'C' and temp_band_units == 'C':
                        pass
                    elif temp_array_units == 'C' and temp_band_units == 'K':
                        logging.debug(
                            ('  Temperature units are K in the GRB band name, ' +
                             'but values appear to be C\n    Mean temperature: {:.2f}\n' +
                             '  Values will NOT be adjusted').format(temp_mean))
                    elif temp_array_units == 'K' and temp_band_units == 'C':
                        logging.debug(
                            ('  Temperature units are C in the GRB band name, ' +
                             'but values appear to be K\n    Mean temperature: {:.2f}\n' +
                             '  Values will be adjusted from K to C').format(temp_mean))
                        output_array -= 273.15

                # Compute wind speed from vectors
                elif input_var == 'vs':
                    wind_u_array = gdc.raster_ds_to_array(
                        input_ds,
                        band=input_band_dict['u-component of wind [m/s]'],
                        mask_extent=nldas_extent, return_nodata=False)
                    wind_v_array = gdc.raster_ds_to_array(
                        input_ds,
                        band=input_band_dict['v-component of wind [m/s]'],
                        mask_extent=nldas_extent, return_nodata=False)
                    output_array = np.sqrt(
                        wind_u_array ** 2 + wind_v_array ** 2)
                # Read all other variables directly
                else:
                    output_array = gdc.raster_ds_to_array(
                        input_ds,
                        band=input_band_dict[nldas_band_dict[input_var]],
                        mask_extent=nldas_extent, return_nodata=False)

                # Save the projected array as 32-bit floats
                gdc.array_to_comp_raster(
                    output_array.astype(np.float32), output_path,
                    band=band_num)
                # gdc.block_to_raster(
                #     ea_array.astype(np.float32), output_path, band=band)
                # gdc.array_to_raster(
                #     output_array.astype(np.float32), output_path,
                #     output_geo=nldas_geo, output_proj=nldas_proj,
                #     stats_flag=stats_flag)

                del output_array
                input_ds = None

            if stats_flag:
                gdc.raster_statistics(output_path)

    logging.debug('\nScript Complete')
示例#3
0
def main(netcdf_ws=os.getcwd(), ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(), start_date=None, end_date=None,
         extent_path=None, output_extent=None,
         stats_flag=True, overwrite_flag=False):
    """Extract DAYMET precipitation

    Args:
        netcdf_ws (str): folder of DAYMET netcdf files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        start_date (str): ISO format date (YYYY-MM-DD)
        end_date (str): ISO format date (YYYY-MM-DD)
        extent_path (str): file path defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nExtracting DAYMET precipitation')

    # If a date is not set, process 2015
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2015, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2015, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Save DAYMET lat, lon, and elevation arrays
    mask_raster = os.path.join(ancillary_ws, 'daymet_mask.img')

    daymet_re = re.compile('daymet_v3_(?P<VAR>\w+)_(?P<YEAR>\d{4})_na.nc4$')

    # DAYMET band name dictionary
    # daymet_band_dict = dict()
    # daymet_band_dict['prcp'] = 'precipitation_amount'
    # daymet_band_dict['srad'] = 'surface_downwelling_shortwave_flux_in_air'
    # daymet_band_dict['sph'] = 'specific_humidity'
    # daymet_band_dict['tmin'] = 'air_temperature'
    # daymet_band_dict['tmax'] = 'air_temperature'

    # Get extent/geo from mask raster
    daymet_ds = gdal.Open(mask_raster)
    daymet_osr = gdc.raster_ds_osr(daymet_ds)
    daymet_proj = gdc.osr_proj(daymet_osr)
    daymet_cs = gdc.raster_ds_cellsize(daymet_ds, x_only=True)
    daymet_extent = gdc.raster_ds_extent(daymet_ds)
    daymet_geo = daymet_extent.geo(daymet_cs)
    daymet_x, daymet_y = daymet_extent.origin()
    daymet_ds = None
    logging.debug('  Projection: {}'.format(daymet_proj))
    logging.debug('  Cellsize: {}'.format(daymet_cs))
    logging.debug('  Geo: {}'.format(daymet_geo))
    logging.debug('  Extent: {}'.format(daymet_extent))
    logging.debug('  Origin: {} {}'.format(daymet_x, daymet_y))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        # Assume input extent is in decimal degrees
        output_extent = gdc.project_extent(
            gdc.Extent(output_extent), gdc.epsg_osr(4326), daymet_osr, 0.001)
        output_extent = gdc.intersect_extents([daymet_extent, output_extent])
        output_extent.adjust_to_snap('EXPAND', daymet_x, daymet_y, daymet_cs)
        output_geo = output_extent.geo(daymet_cs)
        logging.debug('  Geo: {}'.format(output_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        if extent_path.lower().endswith('.shp'):
            output_extent = gdc.feature_path_extent(extent_path)
            extent_osr = gdc.feature_path_osr(extent_path)
            extent_cs = None
        else:
            output_extent = gdc.raster_path_extent(extent_path)
            extent_osr = gdc.raster_path_osr(extent_path)
            extent_cs = gdc.raster_path_cellsize(extent_path, x_only=True)
        output_extent = gdc.project_extent(
            output_extent, extent_osr, daymet_osr, extent_cs)
        output_extent = gdc.intersect_extents([daymet_extent, output_extent])
        output_extent.adjust_to_snap('EXPAND', daymet_x, daymet_y, daymet_cs)
        output_geo = output_extent.geo(daymet_cs)
        logging.debug('  Geo: {}'.format(output_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    else:
        output_extent = daymet_extent.copy()
        output_geo = daymet_geo[:]
    # output_shape = output_extent.shape(cs=daymet_cs)
    xi, yi = gdc.array_geo_offsets(daymet_geo, output_geo, daymet_cs)
    output_rows, output_cols = output_extent.shape(daymet_cs)
    logging.debug('  Shape: {} {}'.format(output_rows, output_cols))
    logging.debug('  Offsets: {} {} (x y)'.format(xi, yi))

    # Process each variable
    input_var = 'prcp'
    output_var = 'ppt'
    logging.info("\nVariable: {}".format(input_var))

    # Build output folder
    var_ws = os.path.join(output_ws, output_var)
    if not os.path.isdir(var_ws):
        os.makedirs(var_ws)

    # Process each file in the input workspace
    for input_name in sorted(os.listdir(netcdf_ws)):
        logging.debug("{}".format(input_name))
        input_match = daymet_re.match(input_name)
        if not input_match:
            logging.debug('  Regular expression didn\'t match, skipping')
            continue
        elif input_match.group('VAR') != input_var:
            logging.debug('  Variable didn\'t match, skipping')
            continue
        year_str = input_match.group('YEAR')
        logging.info("  Year: {}".format(year_str))
        year_int = int(year_str)
        year_days = int(dt.datetime(year_int, 12, 31).strftime('%j'))
        if start_dt is not None and year_int < start_dt.year:
            logging.debug('    Before start date, skipping')
            continue
        elif end_dt is not None and year_int > end_dt.year:
            logging.debug('    After end date, skipping')
            continue

        # Build input file path
        input_raster = os.path.join(netcdf_ws, input_name)
        # if not os.path.isfile(input_raster):
        #     logging.debug(
        #         '    Input raster doesn\'t exist, skipping    {}'.format(
        #             input_raster))
        #     continue

        # Build output folder
        output_year_ws = os.path.join(var_ws, year_str)
        if not os.path.isdir(output_year_ws):
            os.makedirs(output_year_ws)

        # Read in the DAYMET NetCDF file
        input_nc_f = netCDF4.Dataset(input_raster, 'r')
        # logging.debug(input_nc_f.variables)

        # Check all valid dates in the year
        year_dates = date_range(
            dt.datetime(year_int, 1, 1), dt.datetime(year_int + 1, 1, 1))
        for date_dt in year_dates:
            if start_dt is not None and date_dt < start_dt:
                logging.debug('  {} - before start date, skipping'.format(
                    date_dt.date()))
                continue
            elif end_dt is not None and date_dt > end_dt:
                logging.debug('  {} - after end date, skipping'.format(
                    date_dt.date()))
                continue
            else:
                logging.info('  {}'.format(date_dt.date()))

            output_path = os.path.join(
                output_year_ws, '{}_{}_daymet.img'.format(
                    output_var, date_dt.strftime('%Y%m%d')))
            if os.path.isfile(output_path):
                logging.debug('    {}'.format(output_path))
                if not overwrite_flag:
                    logging.debug('    File already exists, skipping')
                    continue
                else:
                    logging.debug('    File already exists, removing existing')
                    os.remove(output_path)

            doy = int(date_dt.strftime('%j'))
            doy_i = range(1, year_days + 1).index(doy)

            # Arrays are being read as masked array with a fill value of -9999
            # Convert to basic numpy array arrays with nan values
            try:
                input_ma = input_nc_f.variables[input_var][
                    doy_i, yi: yi + output_rows, xi: xi + output_cols]
            except IndexError:
                logging.info('    date not in netcdf, skipping')
                continue
            input_nodata = float(input_ma.fill_value)
            output_array = input_ma.data.astype(np.float32)
            output_array[output_array == input_nodata] = np.nan

            # Save the array as 32-bit floats
            gdc.array_to_raster(
                output_array.astype(np.float32), output_path,
                output_geo=output_geo, output_proj=daymet_proj,
                stats_flag=stats_flag)

            del input_ma, output_array
        input_nc_f.close()
        del input_nc_f

    logging.debug('\nScript Complete')
示例#4
0
def main(netcdf_ws=os.getcwd(),
         ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(),
         start_date=None,
         end_date=None,
         extent_path=None,
         output_extent=None,
         stats_flag=True,
         overwrite_flag=False):
    """Extract GRIDMET temperature

    Args:
        netcdf_ws (str): folder of GRIDMET netcdf files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        start_date (str): ISO format date (YYYY-MM-DD)
        end_date (str): ISO format date (YYYY-MM-DD)
        extent_path (str): filepath a raster defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nExtracting GRIDMET vapor pressure')

    # If a date is not set, process 2017
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2017, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2017, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Save GRIDMET lat, lon, and elevation arrays
    elev_raster = os.path.join(ancillary_ws, 'gridmet_elev.img')

    output_fmt = '{}_{}_daily_gridmet.img'
    gridmet_re = re.compile('(?P<VAR>\w+)_(?P<YEAR>\d{4}).nc$')

    # GRIDMET band name dictionary
    gridmet_band_dict = dict()
    gridmet_band_dict['pr'] = 'precipitation_amount'
    gridmet_band_dict['srad'] = 'surface_downwelling_shortwave_flux_in_air'
    gridmet_band_dict['sph'] = 'specific_humidity'
    gridmet_band_dict['tmmn'] = 'air_temperature'
    gridmet_band_dict['tmmx'] = 'air_temperature'
    gridmet_band_dict['vs'] = 'wind_speed'

    # Get extent/geo from elevation raster
    gridmet_ds = gdal.Open(elev_raster)
    gridmet_osr = gdc.raster_ds_osr(gridmet_ds)
    gridmet_proj = gdc.osr_proj(gridmet_osr)
    gridmet_cs = gdc.raster_ds_cellsize(gridmet_ds, x_only=True)
    gridmet_extent = gdc.raster_ds_extent(gridmet_ds)
    gridmet_full_geo = gridmet_extent.geo(gridmet_cs)
    gridmet_x, gridmet_y = gridmet_extent.origin()
    gridmet_ds = None
    logging.debug('  Projection: {}'.format(gridmet_proj))
    logging.debug('  Cellsize: {}'.format(gridmet_cs))
    logging.debug('  Geo: {}'.format(gridmet_full_geo))
    logging.debug('  Extent: {}'.format(gridmet_extent))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        gridmet_extent = gdc.Extent(output_extent)
        gridmet_extent.adjust_to_snap('EXPAND', gridmet_x, gridmet_y,
                                      gridmet_cs)
        gridmet_geo = gridmet_extent.geo(gridmet_cs)
        logging.debug('  Geo: {}'.format(gridmet_geo))
        logging.debug('  Extent: {}'.format(gridmet_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        gridmet_extent = gdc.raster_path_extent(extent_path)
        extent_osr = gdc.raster_path_osr(extent_path)
        extent_cs = gdc.raster_path_cellsize(extent_path, x_only=True)
        gridmet_extent = gdc.project_extent(gridmet_extent, extent_osr,
                                            gridmet_osr, extent_cs)
        gridmet_extent.adjust_to_snap('EXPAND', gridmet_x, gridmet_y,
                                      gridmet_cs)
        gridmet_geo = gridmet_extent.geo(gridmet_cs)
        logging.debug('  Geo: {}'.format(gridmet_geo))
        logging.debug('  Extent: {}'.format(gridmet_extent))
    else:
        gridmet_geo = gridmet_full_geo

    # Get indices for slicing/clipping input arrays
    g_i, g_j = gdc.array_geo_offsets(gridmet_full_geo,
                                     gridmet_geo,
                                     cs=gridmet_cs)
    g_rows, g_cols = gridmet_extent.shape(cs=gridmet_cs)

    # Read the elevation array
    elev_array = gdc.raster_to_array(elev_raster,
                                     mask_extent=gridmet_extent,
                                     return_nodata=False)
    pair_array = et_common.air_pressure_func(elev_array)
    del elev_array

    # Process each variable
    input_var = 'sph'
    output_var = 'ea'
    logging.info("\nVariable: {}".format(input_var))

    # Build output folder
    var_ws = os.path.join(output_ws, output_var)
    if not os.path.isdir(var_ws):
        os.makedirs(var_ws)

    # Process each file in the input workspace
    for input_name in sorted(os.listdir(netcdf_ws)):
        input_match = gridmet_re.match(input_name)
        if not input_match:
            logging.debug("{}".format(input_name))
            logging.debug('  Regular expression didn\'t match, skipping')
            continue
        elif input_match.group('VAR') != input_var:
            logging.debug("{}".format(input_name))
            logging.debug('  Variable didn\'t match, skipping')
            continue
        else:
            logging.info("{}".format(input_name))

        year_str = input_match.group('YEAR')
        logging.info("  {}".format(year_str))
        year_int = int(year_str)
        year_days = int(dt.datetime(year_int, 12, 31).strftime('%j'))
        if start_dt is not None and year_int < start_dt.year:
            logging.debug('    Before start date, skipping')
            continue
        elif end_dt is not None and year_int > end_dt.year:
            logging.debug('    After end date, skipping')
            continue

        # Build input file path
        input_raster = os.path.join(netcdf_ws, input_name)
        # if not os.path.isfile(input_raster):
        #     logging.debug(
        #         '  Input NetCDF doesn\'t exist, skipping    {}'.format(
        #             input_raster))
        #     continue

        # Create a single raster for each year with 365 bands
        # Each day will be stored in a separate band
        output_path = os.path.join(var_ws,
                                   output_fmt.format(output_var, year_str))
        logging.debug('  {}'.format(output_path))
        if os.path.isfile(output_path):
            if not overwrite_flag:
                logging.debug('    File already exists, skipping')
                continue
            else:
                logging.debug('    File already exists, removing existing')
                os.remove(output_path)
        gdc.build_empty_raster(output_path,
                               band_cnt=366,
                               output_dtype=np.float32,
                               output_proj=gridmet_proj,
                               output_cs=gridmet_cs,
                               output_extent=gridmet_extent,
                               output_fill_flag=True)

        # Read in the GRIDMET NetCDF file
        # Immediatly clip input array to save memory
        input_nc_f = netCDF4.Dataset(input_raster, 'r')
        input_nc = input_nc_f.variables[
            gridmet_band_dict[input_var]][:, g_i:g_i + g_cols,
                                          g_j:g_j + g_rows].copy()
        input_nc = np.transpose(input_nc, (0, 2, 1))

        # A numpy array is returned when slicing a masked array
        #   if there are no masked pixels
        # This is a hack to force the numpy array back to a masked array
        if type(input_nc) != np.ma.core.MaskedArray:
            input_nc = np.ma.core.MaskedArray(
                input_nc, np.zeros(input_nc.shape, dtype=bool))

        # Check all valid dates in the year
        year_dates = date_range(dt.datetime(year_int, 1, 1),
                                dt.datetime(year_int + 1, 1, 1))
        for date_dt in year_dates:
            if start_dt is not None and date_dt < start_dt:
                # logging.debug('  before start date, skipping')
                continue
            elif end_dt is not None and date_dt > end_dt:
                # logging.debug('  after end date, skipping')
                continue
            logging.info('  {}'.format(date_dt.strftime('%Y_%m_%d')))

            doy = int(date_dt.strftime('%j'))
            doy_i = range(1, year_days + 1).index(doy)

            # Arrays are being read as masked array with a fill value of -9999
            # Convert to basic numpy array arrays with nan values
            try:
                input_full_ma = input_nc[doy_i, :, :]
            except IndexError:
                logging.info('    date not in netcdf, skipping')
                continue
            input_full_array = input_full_ma.data.astype(np.float32)
            input_full_nodata = float(input_full_ma.fill_value)
            input_full_array[input_full_array == input_full_nodata] = np.nan

            # Since inputs are netcdf, need to create GDAL raster
            #   datasets in order to use gdal_common functions
            # Create an in memory dataset of the full ETo array
            input_full_ds = gdc.array_to_mem_ds(input_full_array,
                                                output_geo=gridmet_full_geo,
                                                output_proj=gridmet_proj)

            # Then extract the subset from the in memory dataset
            sph_array = gdc.raster_ds_to_array(input_full_ds,
                                               1,
                                               mask_extent=gridmet_extent,
                                               return_nodata=False)

            # Compute ea [kPa] from specific humidity [kg/kg]
            ea_array = (sph_array * pair_array) / (0.622 + 0.378 * sph_array)

            # Save the projected array as 32-bit floats
            gdc.array_to_comp_raster(ea_array.astype(np.float32),
                                     output_path,
                                     band=doy,
                                     stats_flag=False)
            # gdc.array_to_raster(
            #     ea_array.astype(np.float32), output_path,
            #     output_geo=gridmet_geo, output_proj=gridmet_proj,
            #     stats_flag=False)
            del sph_array, ea_array
        input_nc_f.close()
        del input_nc_f

        if stats_flag:
            gdc.raster_statistics(output_path)

    logging.debug('\nScript Complete')
def main(grb_ws=os.getcwd(),
         ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(),
         etr_flag=False,
         eto_flag=False,
         landsat_ws=None,
         start_date=None,
         end_date=None,
         times_str='',
         extent_path=None,
         output_extent=None,
         daily_flag=True,
         stats_flag=True,
         overwrite_flag=False):
    """Compute hourly ETr/ETo from NLDAS data

    Args:
        grb_ws (str): folder of NLDAS GRB files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        etr_flag (bool): if True, compute alfalfa reference ET (ETr)
        eto_flag (bool): if True, compute grass reference ET (ETo)
        landsat_ws (str): folder of Landsat scenes or tar.gz files
        start_date (str): ISO format date (YYYY-MM-DD)
        end_date (str): ISO format date (YYYY-MM-DD)
        times (str): comma separated values and/or ranges of UTC hours
            (i.e. "1, 2, 5-8")
            Parsed with python_common.parse_int_set()
        extent_path (str): file path defining the output extent
        output_extent (list): decimal degrees values defining output extent
        daily_flag (bool): if True, save daily ETr/ETo sum raster.
            Default is True
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nComputing NLDAS hourly ETr/ETo')
    np.seterr(invalid='ignore')

    # Compute ETr and/or ETo
    if not etr_flag and not eto_flag:
        logging.info('  ETo/ETr flag(s) not set, defaulting to ETr')
        etr_flag = True

    # If a date is not set, process 2017
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2017, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2017, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Only process a specific hours
    if not times_str:
        time_list = range(0, 24, 1)
    else:
        time_list = list(parse_int_set(times_str))
    time_list = ['{:02d}00'.format(t) for t in time_list]

    etr_folder = 'etr'
    eto_folder = 'eto'
    hour_fmt = '{}_{:04d}{:02d}{:02d}_hourly_nldas.img'
    # hour_fmt = '{}_{:04d}{:02d}{:02d}_{4:04d}_nldas.img'
    day_fmt = '{}_{:04d}{:02d}{:02d}_nldas.img'
    # input_fmt = 'NLDAS_FORA0125_H.A{:04d}{:02d}{:02d}.{}.002.grb'
    input_re = re.compile('NLDAS_FORA0125_H.A(?P<YEAR>\d{4})(?P<MONTH>\d{2})' +
                          '(?P<DAY>\d{2}).(?P<TIME>\d{4}).002.grb$')

    # Assume NLDAS is NAD83
    # input_epsg = 'EPSG:4269'

    # Ancillary raster paths
    mask_path = os.path.join(ancillary_ws, 'nldas_mask.img')
    elev_path = os.path.join(ancillary_ws, 'nldas_elev.img')
    lat_path = os.path.join(ancillary_ws, 'nldas_lat.img')
    lon_path = os.path.join(ancillary_ws, 'nldas_lon.img')

    # Build a date list from landsat_ws scene folders or tar.gz files
    date_list = []
    if landsat_ws is not None and os.path.isdir(landsat_ws):
        logging.info('\nReading dates from Landsat IDs')
        logging.info('  {}'.format(landsat_ws))
        landsat_re = re.compile(
            '^(?:LT04|LT05|LE07|LC08)_(?:\d{3})(?:\d{3})_' +
            '(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})')
        for root, dirs, files in os.walk(landsat_ws, topdown=True):
            # If root matches, don't explore subfolders
            try:
                landsat_match = landsat_re.match(os.path.basename(root))
                date_list.append(
                    dt.datetime.strptime('_'.join(landsat_match.groups()),
                                         '%Y_%m_%d').date().isoformat())
                dirs[:] = []
            except:
                pass

            for file in files:
                try:
                    landsat_match = landsat_re.match(file)
                    date_list.append(
                        dt.datetime.strptime('_'.join(landsat_match.groups()),
                                             '%Y_%m_%d').date().isoformat())
                except:
                    pass
        date_list = sorted(list(set(date_list)))
    # elif landsat_ws is not None and os.path.isfile(landsat_ws):
    #     with open(landsat_ws) as landsat_f:

    # This allows GDAL to throw Python Exceptions
    # gdal.UseExceptions()
    # mem_driver = gdal.GetDriverByName('MEM')

    # Get the NLDAS spatial reference from the mask raster
    nldas_ds = gdal.Open(mask_path)
    nldas_osr = gdc.raster_ds_osr(nldas_ds)
    nldas_proj = gdc.osr_proj(nldas_osr)
    nldas_cs = gdc.raster_ds_cellsize(nldas_ds, x_only=True)
    nldas_extent = gdc.raster_ds_extent(nldas_ds)
    nldas_geo = nldas_extent.geo(nldas_cs)
    nldas_x, nldas_y = nldas_extent.origin()
    nldas_ds = None
    logging.debug('  Projection: {}'.format(nldas_proj))
    logging.debug('  Cellsize: {}'.format(nldas_cs))
    logging.debug('  Geo: {}'.format(nldas_geo))
    logging.debug('  Extent: {}'.format(nldas_extent))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        nldas_extent = gdc.Extent(output_extent)
        nldas_extent.adjust_to_snap('EXPAND', nldas_x, nldas_y, nldas_cs)
        nldas_geo = nldas_extent.geo(nldas_cs)
        logging.debug('  Geo: {}'.format(nldas_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        if extent_path.lower().endswith('.shp'):
            nldas_extent = gdc.feature_path_extent(extent_path)
            extent_osr = gdc.feature_path_osr(extent_path)
            extent_cs = None
        else:
            nldas_extent = gdc.raster_path_extent(extent_path)
            extent_osr = gdc.raster_path_osr(extent_path)
            extent_cs = gdc.raster_path_cellsize(extent_path, x_only=True)
        nldas_extent = gdc.project_extent(nldas_extent, extent_osr, nldas_osr,
                                          extent_cs)
        nldas_extent.adjust_to_snap('EXPAND', nldas_x, nldas_y, nldas_cs)
        nldas_geo = nldas_extent.geo(nldas_cs)
        logging.debug('  Geo: {}'.format(nldas_geo))
        logging.debug('  Extent: {}'.format(nldas_extent))
    logging.debug('')

    # Read the NLDAS mask array if present
    if mask_path and os.path.isfile(mask_path):
        mask_array, mask_nodata = gdc.raster_to_array(mask_path,
                                                      mask_extent=nldas_extent,
                                                      fill_value=0,
                                                      return_nodata=True)
        mask_array = mask_array != mask_nodata
    else:
        mask_array = None

    # Read ancillary arrays (or subsets?)
    elev_array = gdc.raster_to_array(elev_path,
                                     mask_extent=nldas_extent,
                                     return_nodata=False)
    # pair_array = et_common.air_pressure_func(elev_array)
    lat_array = gdc.raster_to_array(lat_path,
                                    mask_extent=nldas_extent,
                                    return_nodata=False)
    lon_array = gdc.raster_to_array(lon_path,
                                    mask_extent=nldas_extent,
                                    return_nodata=False)

    # Hourly RefET functions expects lat/lon in radians
    lat_array *= (math.pi / 180)
    lon_array *= (math.pi / 180)

    # Build output folder
    etr_ws = os.path.join(output_ws, etr_folder)
    eto_ws = os.path.join(output_ws, eto_folder)
    if etr_flag and not os.path.isdir(etr_ws):
        os.makedirs(etr_ws)
    if eto_flag and not os.path.isdir(eto_ws):
        os.makedirs(eto_ws)

    # DEADBEEF - Instead of processing all available files, the following
    #   code will process files for target dates
    # for input_dt in date_range(start_dt, end_dt + dt.timedelta(1)):
    #     logging.info(input_dt.date())

    # Iterate all available files and check dates if necessary
    # Each sub folder in the main folder has all imagery for 1 day
    #   (in UTC time)
    # The path for each subfolder is the /YYYY/DOY
    errors = defaultdict(list)
    for root, folders, files in os.walk(grb_ws):
        root_split = os.path.normpath(root).split(os.sep)

        # If the year/doy is outside the range, skip
        if (re.match('\d{4}', root_split[-2])
                and re.match('\d{3}', root_split[-1])):
            root_dt = dt.datetime.strptime(
                '{}_{}'.format(root_split[-2], root_split[-1]), '%Y_%j')
            logging.info('{}'.format(root_dt.date()))
            if ((start_dt is not None and root_dt < start_dt)
                    or (end_dt is not None and root_dt > end_dt)):
                continue
            elif date_list and root_dt.date().isoformat() not in date_list:
                continue
        # If the year is outside the range, don't search subfolders
        elif re.match('\d{4}', root_split[-1]):
            root_year = int(root_split[-1])
            logging.info('Year: {}'.format(root_year))
            if ((start_dt is not None and root_year < start_dt.year)
                    or (end_dt is not None and root_year > end_dt.year)):
                folders[:] = []
            else:
                folders[:] = sorted(folders)
            continue
        else:
            continue
        logging.debug('  {}'.format(root))

        # Start off assuming every file needs to be processed
        day_skip_flag = False

        # Build output folders if necessary
        etr_year_ws = os.path.join(etr_ws, str(root_dt.year))
        eto_year_ws = os.path.join(eto_ws, str(root_dt.year))
        if etr_flag and not os.path.isdir(etr_year_ws):
            os.makedirs(etr_year_ws)
        if eto_flag and not os.path.isdir(eto_year_ws):
            os.makedirs(eto_year_ws)

        # Build daily total paths
        etr_day_path = os.path.join(
            etr_year_ws,
            day_fmt.format('etr', root_dt.year, root_dt.month, root_dt.day))
        eto_day_path = os.path.join(
            eto_year_ws,
            day_fmt.format('eto', root_dt.year, root_dt.month, root_dt.day))
        etr_hour_path = os.path.join(
            etr_year_ws,
            hour_fmt.format('etr', root_dt.year, root_dt.month, root_dt.day))
        eto_hour_path = os.path.join(
            eto_year_ws,
            hour_fmt.format('eto', root_dt.year, root_dt.month, root_dt.day))
        # logging.debug('  {}'.format(etr_hour_path))

        # If daily ETr/ETo files are present, day can be skipped
        if not overwrite_flag and daily_flag:
            if etr_flag and not os.path.isfile(etr_day_path):
                pass
            elif eto_flag and not os.path.isfile(eto_day_path):
                pass
            else:
                day_skip_flag = True

        # If the hour and daily files don't need to be made, skip the day
        if not overwrite_flag:
            if etr_flag and not os.path.isfile(etr_hour_path):
                pass
            elif eto_flag and not os.path.isfile(eto_hour_path):
                pass
            elif day_skip_flag:
                logging.debug('  File(s) already exist, skipping')
                continue

        # Create a single raster for each day with 24 bands
        # Each time step will be stored in a separate band
        if etr_flag:
            logging.debug('  {}'.format(etr_day_path))
            gdc.build_empty_raster(etr_hour_path,
                                   band_cnt=24,
                                   output_dtype=np.float32,
                                   output_proj=nldas_proj,
                                   output_cs=nldas_cs,
                                   output_extent=nldas_extent,
                                   output_fill_flag=True)
        if eto_flag:
            logging.debug('  {}'.format(eto_day_path))
            gdc.build_empty_raster(eto_hour_path,
                                   band_cnt=24,
                                   output_dtype=np.float32,
                                   output_proj=nldas_proj,
                                   output_cs=nldas_cs,
                                   output_extent=nldas_extent,
                                   output_fill_flag=True)

        # Sum all ETr/ETo images in each folder to generate a UTC day total
        etr_day_array = 0
        eto_day_array = 0

        # Process each hour file
        for input_name in sorted(files):
            logging.info('  {}'.format(input_name))
            input_match = input_re.match(input_name)
            if input_match is None:
                logging.debug('    Regular expression didn\'t match, skipping')
                continue
            input_dt = dt.datetime(int(input_match.group('YEAR')),
                                   int(input_match.group('MONTH')),
                                   int(input_match.group('DAY')))
            input_doy = int(input_dt.strftime('%j'))
            time_str = input_match.group('TIME')
            band_num = int(time_str[:2]) + 1
            # if start_dt is not None and input_dt < start_dt:
            #     continue
            # elif end_dt is not None and input_dt > end_dt:
            #     continue
            # elif date_list and input_dt.date().isoformat() not in date_list:
            #     continue
            if not daily_flag and time_str not in time_list:
                logging.debug('    Time not in list and not daily, skipping')
                continue

            input_path = os.path.join(root, input_name)
            logging.debug('    Time: {} {}'.format(input_dt.date(), time_str))
            logging.debug('    Band: {}'.format(band_num))

            # Determine band numbering/naming
            try:
                input_band_dict = grib_band_names(input_path)
            except RuntimeError as e:
                errors[input_path].append(e)
                logging.error(' RuntimeError: {} Skipping: {}'.format(
                    e, input_path))
                continue

            # Read input bands
            input_ds = gdal.Open(input_path)

            # Temperature should be in C for et_common.refet_hourly_func()
            if 'Temperature [K]' in input_band_dict.keys():
                temp_band_units = 'K'
                temp_array = gdc.raster_ds_to_array(
                    input_ds,
                    band=input_band_dict['Temperature [K]'],
                    mask_extent=nldas_extent,
                    return_nodata=False)
            elif 'Temperature [C]' in input_band_dict.keys():
                temp_band_units = 'C'
                temp_array = gdc.raster_ds_to_array(
                    input_ds,
                    band=input_band_dict['Temperature [C]'],
                    mask_extent=nldas_extent,
                    return_nodata=False)
            else:
                logging.error('Unknown Temperature units, skipping')
                logging.error('  {}'.format(input_band_dict.keys()))
                continue

            # DEADBEEF - Having issue with T appearing to be C but labeled as K
            # Try to determine temperature units from values
            temp_mean = float(np.nanmean(temp_array))
            temp_units_dict = {20: 'C', 293: 'K'}
            temp_array_units = temp_units_dict[min(
                temp_units_dict, key=lambda x: abs(x - temp_mean))]
            if temp_array_units == 'K' and temp_band_units == 'K':
                logging.debug('  Converting temperature from K to C')
                temp_array -= 273.15
            elif temp_array_units == 'C' and temp_band_units == 'C':
                pass
            elif temp_array_units == 'C' and temp_band_units == 'K':
                logging.debug((
                    '  Temperature units are K in the GRB band name, ' +
                    'but values appear to be C\n    Mean temperature: {:.2f}\n'
                    + '  Values will NOT be adjusted').format(temp_mean))
            elif temp_array_units == 'K' and temp_band_units == 'C':
                logging.debug((
                    '  Temperature units are C in the GRB band name, ' +
                    'but values appear to be K\n    Mean temperature: {:.2f}\n'
                    +
                    '  Values will be adjusted from K to C').format(temp_mean))
                temp_array -= 273.15
            try:
                sph_array = gdc.raster_ds_to_array(
                    input_ds,
                    band=input_band_dict['Specific humidity [kg/kg]'],
                    mask_extent=nldas_extent,
                    return_nodata=False)
                rs_array = gdc.raster_ds_to_array(
                    input_ds,
                    band=input_band_dict[
                        'Downward shortwave radiation flux [W/m^2]'],
                    mask_extent=nldas_extent,
                    return_nodata=False)
                wind_u_array = gdc.raster_ds_to_array(
                    input_ds,
                    band=input_band_dict['u-component of wind [m/s]'],
                    mask_extent=nldas_extent,
                    return_nodata=False)
                wind_v_array = gdc.raster_ds_to_array(
                    input_ds,
                    band=input_band_dict['v-component of wind [m/s]'],
                    mask_extent=nldas_extent,
                    return_nodata=False)
                input_ds = None
            except KeyError as e:
                errors[input_path].append(e)
                logging.error(' KeyError: {} Skipping: {}'.format(
                    e, input_ds.GetDescription()))
                continue

            rs_array *= 0.0036  # W m-2 to MJ m-2 hr-1
            wind_array = np.sqrt(wind_u_array**2 + wind_v_array**2)
            del wind_u_array, wind_v_array

            # ETr
            if etr_flag:
                etr_array = et_common.refet_hourly_func(temp_array,
                                                        sph_array,
                                                        rs_array,
                                                        wind_array,
                                                        zw=10,
                                                        elev=elev_array,
                                                        lat=lat_array,
                                                        lon=lon_array,
                                                        doy=input_doy,
                                                        time=int(time_str) /
                                                        100,
                                                        ref_type='ETR')
                if daily_flag:
                    etr_day_array += etr_array
                if time_str in time_list:
                    gdc.array_to_comp_raster(etr_array.astype(np.float32),
                                             etr_hour_path,
                                             band=band_num,
                                             stats_flag=False)
                    del etr_array

            # ETo
            if eto_flag:
                eto_array = et_common.refet_hourly_func(temp_array,
                                                        sph_array,
                                                        rs_array,
                                                        wind_array,
                                                        zw=10,
                                                        elev=elev_array,
                                                        lat=lat_array,
                                                        lon=lon_array,
                                                        doy=input_doy,
                                                        time=int(time_str) /
                                                        100,
                                                        ref_type='ETO')
                if eto_flag and daily_flag:
                    eto_day_array += eto_array
                if eto_flag and time_str in time_list:
                    gdc.array_to_comp_raster(eto_array.astype(np.float32),
                                             eto_hour_path,
                                             band=band_num,
                                             stats_flag=False)
                    del eto_array

            del temp_array, sph_array, rs_array, wind_array

        if stats_flag and etr_flag:
            gdc.raster_statistics(etr_hour_path)
        if stats_flag and eto_flag:
            gdc.raster_statistics(eto_hour_path)

        # Save the projected ETr/ETo as 32-bit floats
        if not day_skip_flag and daily_flag:
            if etr_flag:
                try:
                    gdc.array_to_raster(etr_day_array.astype(np.float32),
                                        etr_day_path,
                                        output_geo=nldas_geo,
                                        output_proj=nldas_proj,
                                        stats_flag=stats_flag)
                except AttributeError:
                    pass
            if eto_flag:
                try:

                    gdc.array_to_raster(eto_day_array.astype(np.float32),
                                        eto_day_path,
                                        output_geo=nldas_geo,
                                        output_proj=nldas_proj,
                                        stats_flag=stats_flag)
                except AttributeError:
                    pass

        del etr_day_array, eto_day_array

    if len(errors) > 0:
        logging.info('\nThe following errors were encountered:')
        for key, value in errors.items():
            logging.error(' Filepath: {}, error: {}'.format(key, value))

    logging.debug('\nScript Complete')
示例#6
0
def main(grb_ws=os.getcwd(),
         ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(),
         landsat_ws=None,
         start_date=None,
         end_date=None,
         times_str='',
         extent_path=None,
         output_extent=None,
         stats_flag=True,
         overwrite_flag=False):
    """Extract hourly NLDAS vapour pressure rasters

    Args:
        grb_ws (str): folder of NLDAS GRB files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        landsat_ws (str): folder of Landsat scenes or tar.gz files
        start_date (str): ISO format date (YYYY-MM-DD)
        end_date (str): ISO format date (YYYY-MM-DD)
        times (str): comma separated values and/or ranges of UTC hours
            (i.e. "1, 2, 5-8")
            Parsed with python_common.parse_int_set()
        extent_path (str): file path defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nExtracting NLDAS vapour pressure rasters')

    # input_fmt = 'NLDAS_FORA0125_H.A{:04d}{:02d}{:02d}.{}.002.grb'
    input_re = re.compile('NLDAS_FORA0125_H.A(?P<YEAR>\d{4})(?P<MONTH>\d{2})' +
                          '(?P<DAY>\d{2}).(?P<TIME>\d{4}).002.grb$')

    output_folder = 'ea'
    output_fmt = 'ea_{:04d}{:02d}{:02d}_hourly_nldas.img'
    # output_fmt = 'ea_{:04d}{:02d}{:02d}_{:04d}_nldas.img'

    # If a date is not set, process 2017
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2017, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2017, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Only process a specific hours
    if not times_str:
        time_list = range(0, 24, 1)
    else:
        time_list = list(parse_int_set(times_str))
    time_list = ['{:02d}00'.format(t) for t in time_list]

    # Assume NLDAS is NAD83
    # input_epsg = 'EPSG:4269'

    # Ancillary raster paths
    mask_path = os.path.join(ancillary_ws, 'nldas_mask.img')
    elev_path = os.path.join(ancillary_ws, 'nldas_elev.img')

    # Build a date list from landsat_ws scene folders or tar.gz files
    date_list = []
    if landsat_ws is not None and os.path.isdir(landsat_ws):
        logging.info('\nReading dates from Landsat IDs')
        logging.info('  {}'.format(landsat_ws))
        landsat_re = re.compile(
            '^(?:LT04|LT05|LE07|LC08)_(?:\d{3})(?:\d{3})_' +
            '(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})')
        for root, dirs, files in os.walk(landsat_ws, topdown=True):
            # If root matches, don't explore subfolders
            try:
                landsat_match = landsat_re.match(os.path.basename(root))
                date_list.append(
                    dt.datetime.strptime('_'.join(landsat_match.groups()),
                                         '%Y_%m_%d').date().isoformat())
                dirs[:] = []
            except:
                pass

            for file in files:
                try:
                    landsat_match = landsat_re.match(file)
                    date_list.append(
                        dt.datetime.strptime('_'.join(landsat_match.groups()),
                                             '%Y_%m_%d').date().isoformat())
                except:
                    pass
        date_list = sorted(list(set(date_list)))
    # elif landsat_ws is not None and os.path.isfile(landsat_ws):
    #     with open(landsat_ws) as landsat_f:

    # This allows GDAL to throw Python Exceptions
    # gdal.UseExceptions()
    # mem_driver = gdal.GetDriverByName('MEM')

    # Get the NLDAS spatial reference from the mask raster
    nldas_ds = gdal.Open(mask_path)
    nldas_osr = gdc.raster_ds_osr(nldas_ds)
    nldas_proj = gdc.osr_proj(nldas_osr)
    nldas_cs = gdc.raster_ds_cellsize(nldas_ds, x_only=True)
    nldas_extent = gdc.raster_ds_extent(nldas_ds)
    nldas_geo = nldas_extent.geo(nldas_cs)
    nldas_x, nldas_y = nldas_extent.origin()
    nldas_ds = None
    logging.debug('  Projection: {}'.format(nldas_proj))
    logging.debug('  Cellsize: {}'.format(nldas_cs))
    logging.debug('  Geo: {}'.format(nldas_geo))
    logging.debug('  Extent: {}'.format(nldas_extent))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        nldas_extent = gdc.Extent(output_extent)
        nldas_extent.adjust_to_snap('EXPAND', nldas_x, nldas_y, nldas_cs)
        nldas_geo = nldas_extent.geo(nldas_cs)
        logging.debug('  Geo: {}'.format(nldas_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        if extent_path.lower().endswith('.shp'):
            nldas_extent = gdc.feature_path_extent(extent_path)
            extent_osr = gdc.feature_path_osr(extent_path)
            extent_cs = None
        else:
            nldas_extent = gdc.raster_path_extent(extent_path)
            extent_osr = gdc.raster_path_osr(extent_path)
            extent_cs = gdc.raster_path_cellsize(extent_path, x_only=True)
        nldas_extent = gdc.project_extent(nldas_extent, extent_osr, nldas_osr,
                                          extent_cs)
        nldas_extent.adjust_to_snap('EXPAND', nldas_x, nldas_y, nldas_cs)
        nldas_geo = nldas_extent.geo(nldas_cs)
        logging.debug('  Geo: {}'.format(nldas_geo))
        logging.debug('  Extent: {}'.format(nldas_extent))
    logging.debug('')

    # Read the NLDAS mask array if present
    if mask_path and os.path.isfile(mask_path):
        mask_array, mask_nodata = gdc.raster_to_array(mask_path,
                                                      mask_extent=nldas_extent,
                                                      fill_value=0,
                                                      return_nodata=True)
        mask_array = mask_array != mask_nodata
    else:
        mask_array = None

    # Read elevation arrays (or subsets?)
    elev_array = gdc.raster_to_array(elev_path,
                                     mask_extent=nldas_extent,
                                     return_nodata=False)
    pair_array = et_common.air_pressure_func(elev_array)

    # Build output folder
    var_ws = os.path.join(output_ws, output_folder)
    if not os.path.isdir(var_ws):
        os.makedirs(var_ws)

    # Each sub folder in the main folder has all imagery for 1 day
    # The path for each subfolder is the /YYYY/DOY

    # This approach will process files for target dates
    # for input_dt in date_range(start_dt, end_dt + dt.timedelta(1)):
    #     logging.info(input_dt.date())

    # Iterate all available files and check dates if necessary
    for root, folders, files in os.walk(grb_ws):
        root_split = os.path.normpath(root).split(os.sep)

        # If the year/doy is outside the range, skip
        if (re.match('\d{4}', root_split[-2])
                and re.match('\d{3}', root_split[-1])):
            root_dt = dt.datetime.strptime(
                '{}_{}'.format(root_split[-2], root_split[-1]), '%Y_%j')
            logging.info('{}'.format(root_dt.date()))
            if ((start_dt is not None and root_dt < start_dt)
                    or (end_dt is not None and root_dt > end_dt)):
                continue
            elif date_list and root_dt.date().isoformat() not in date_list:
                continue
        # If the year is outside the range, don't search subfolders
        elif re.match('\d{4}', root_split[-1]):
            root_year = int(root_split[-1])
            logging.info('Year: {}'.format(root_year))
            if ((start_dt is not None and root_year < start_dt.year)
                    or (end_dt is not None and root_year > end_dt.year)):
                folders[:] = []
            else:
                folders[:] = sorted(folders)
            continue
        else:
            continue

        # Create a single raster for each day with 24 bands
        # Each time step will be stored in a separate band
        output_name = output_fmt.format(root_dt.year, root_dt.month,
                                        root_dt.day)
        output_path = os.path.join(var_ws, str(root_dt.year), output_name)
        logging.debug('  {}'.format(output_path))
        if os.path.isfile(output_path):
            if not overwrite_flag:
                logging.debug('    File already exists, skipping')
                continue
            else:
                logging.debug('    File already exists, removing existing')
                os.remove(output_path)
        logging.debug('  {}'.format(root))
        if not os.path.isdir(os.path.dirname(output_path)):
            os.makedirs(os.path.dirname(output_path))
        gdc.build_empty_raster(output_path,
                               band_cnt=24,
                               output_dtype=np.float32,
                               output_proj=nldas_proj,
                               output_cs=nldas_cs,
                               output_extent=nldas_extent,
                               output_fill_flag=True)

        # Iterate through hourly files
        for input_name in sorted(files):
            logging.info('  {}'.format(input_name))
            input_path = os.path.join(root, input_name)
            input_match = input_re.match(input_name)
            if input_match is None:
                logging.debug('  Regular expression didn\'t match, skipping')
                continue
            input_dt = dt.datetime(int(input_match.group('YEAR')),
                                   int(input_match.group('MONTH')),
                                   int(input_match.group('DAY')))
            time_str = input_match.group('TIME')
            band_num = int(time_str[:2]) + 1
            # if start_dt is not None and input_dt < start_dt:
            #     continue
            # elif end_dt is not None and input_dt > end_dt:
            #     continue
            # elif date_list and input_dt.date().isoformat() not in date_list:
            #     continue
            if time_str not in time_list:
                logging.debug('    Time not in list, skipping')
                continue
            logging.debug('    Time: {} {}'.format(input_dt.date(), time_str))
            logging.debug('    Band: {}'.format(band_num))

            # Determine band numbering/naming
            input_band_dict = grib_band_names(input_path)

            # Compute vapour pressure from specific humidity
            input_ds = gdal.Open(input_path)
            sph_array = gdc.raster_ds_to_array(
                input_ds,
                band=input_band_dict['Specific humidity [kg/kg]'],
                mask_extent=nldas_extent,
                return_nodata=False)
            ea_array = (sph_array * pair_array) / (0.622 + 0.378 * sph_array)

            # Save the projected array as 32-bit floats
            gdc.array_to_comp_raster(ea_array.astype(np.float32),
                                     output_path,
                                     band=band_num)
            # gdc.block_to_raster(
            #     ea_array.astype(np.float32), output_path, band=band)
            # gdc.array_to_raster(
            #     ea_array.astype(np.float32), output_path,
            #     output_geo=nldas_geo, output_proj=nldas_proj,
            #     stats_flag=stats_flag)

            del sph_array
            input_ds = None

        if stats_flag:
            gdc.raster_statistics(output_path)

    logging.debug('\nScript Complete')
示例#7
0
def main(netcdf_ws=os.getcwd(),
         ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(),
         etr_flag=False,
         eto_flag=False,
         start_date=None,
         end_date=None,
         extent_path=None,
         output_extent=None,
         stats_flag=True,
         overwrite_flag=False):
    """Compute daily ETr/ETo from GRIDMET data

    Args:
        netcdf_ws (str): folder of GRIDMET netcdf files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        etr_flag (bool): if True, compute alfalfa reference ET (ETr)
        eto_flag (bool): if True, compute grass reference ET (ETo)
        start_date (str): ISO format date (YYYY-MM-DD)
        end_date (str): ISO format date (YYYY-MM-DD)
        extent_path (str): file path defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nComputing GRIDMET ETo/ETr')
    np.seterr(invalid='ignore')

    # Compute ETr and/or ETo
    if not etr_flag and not eto_flag:
        logging.info('  ETo/ETr flag(s) not set, defaulting to ETr')
        etr_flag = True

    # If a date is not set, process 2017
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2017, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2017, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Save GRIDMET lat, lon, and elevation arrays
    elev_raster = os.path.join(ancillary_ws, 'gridmet_elev.img')
    lat_raster = os.path.join(ancillary_ws, 'gridmet_lat.img')

    # Wind speed is measured at 2m
    zw = 10

    etr_fmt = 'etr_{}_daily_gridmet.img'
    eto_fmt = 'eto_{}_daily_gridmet.img'
    # gridmet_re = re.compile('(?P<VAR>\w+)_(?P<YEAR>\d{4}).nc')

    # GRIDMET band name dictionary
    gridmet_band_dict = dict()
    gridmet_band_dict['pr'] = 'precipitation_amount'
    gridmet_band_dict['srad'] = 'surface_downwelling_shortwave_flux_in_air'
    gridmet_band_dict['sph'] = 'specific_humidity'
    gridmet_band_dict['tmmn'] = 'air_temperature'
    gridmet_band_dict['tmmx'] = 'air_temperature'
    gridmet_band_dict['vs'] = 'wind_speed'

    # Get extent/geo from elevation raster
    gridmet_ds = gdal.Open(elev_raster)
    gridmet_osr = gdc.raster_ds_osr(gridmet_ds)
    gridmet_proj = gdc.osr_proj(gridmet_osr)
    gridmet_cs = gdc.raster_ds_cellsize(gridmet_ds, x_only=True)
    gridmet_extent = gdc.raster_ds_extent(gridmet_ds)
    gridmet_full_geo = gridmet_extent.geo(gridmet_cs)
    gridmet_x, gridmet_y = gridmet_extent.origin()
    gridmet_ds = None
    logging.debug('  Projection: {}'.format(gridmet_proj))
    logging.debug('  Cellsize: {}'.format(gridmet_cs))
    logging.debug('  Geo: {}'.format(gridmet_full_geo))
    logging.debug('  Extent: {}'.format(gridmet_extent))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        gridmet_extent = gdc.Extent(output_extent)
        gridmet_extent.adjust_to_snap('EXPAND', gridmet_x, gridmet_y,
                                      gridmet_cs)
        gridmet_geo = gridmet_extent.geo(gridmet_cs)
        logging.debug('  Geo: {}'.format(gridmet_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        if extent_path.lower().endswith('.shp'):
            gridmet_extent = gdc.feature_path_extent(extent_path)
            extent_osr = gdc.feature_path_osr(extent_path)
            extent_cs = None
        else:
            gridmet_extent = gdc.raster_path_extent(extent_path)
            extent_osr = gdc.raster_path_osr(extent_path)
            extent_cs = gdc.raster_path_cellsize(extent_path, x_only=True)
        gridmet_extent = gdc.project_extent(gridmet_extent, extent_osr,
                                            gridmet_osr, extent_cs)
        gridmet_extent.adjust_to_snap('EXPAND', gridmet_x, gridmet_y,
                                      gridmet_cs)
        gridmet_geo = gridmet_extent.geo(gridmet_cs)
        logging.debug('  Geo: {}'.format(gridmet_geo))
        logging.debug('  Extent: {}'.format(gridmet_extent))
    else:
        gridmet_geo = gridmet_full_geo

    # Get indices for slicing/clipping input arrays
    g_i, g_j = gdc.array_geo_offsets(gridmet_full_geo,
                                     gridmet_geo,
                                     cs=gridmet_cs)
    g_rows, g_cols = gridmet_extent.shape(cs=gridmet_cs)

    # Read the elevation and latitude arrays
    elev_array = gdc.raster_to_array(elev_raster,
                                     mask_extent=gridmet_extent,
                                     return_nodata=False)
    lat_array = gdc.raster_to_array(lat_raster,
                                    mask_extent=gridmet_extent,
                                    return_nodata=False)
    lat_array *= math.pi / 180

    # Check elevation and latitude arrays
    if np.all(np.isnan(elev_array)):
        logging.error('\nERROR: The elevation array is all nodata, exiting\n')
        sys.exit()
    elif np.all(np.isnan(lat_array)):
        logging.error('\nERROR: The latitude array is all nodata, exiting\n')
        sys.exit()

    # Build output folder
    etr_ws = os.path.join(output_ws, 'etr')
    eto_ws = os.path.join(output_ws, 'eto')
    if etr_flag and not os.path.isdir(etr_ws):
        os.makedirs(etr_ws)
    if eto_flag and not os.path.isdir(eto_ws):
        os.makedirs(eto_ws)

    # By default, try to process all possible years
    if start_dt.year == end_dt.year:
        year_list = [str(start_dt.year)]
    year_list = sorted(map(str, range((start_dt.year), (end_dt.year + 1))))

    # Process each year separately
    for year_str in year_list:
        logging.info("\nYear: {}".format(year_str))
        year_int = int(year_str)
        year_days = int(dt.datetime(year_int, 12, 31).strftime('%j'))
        if start_dt is not None and year_int < start_dt.year:
            logging.debug('  Before start date, skipping')
            continue
        elif end_dt is not None and year_int > end_dt.year:
            logging.debug('  After end date, skipping')
            continue

        # Build input file path
        tmin_path = os.path.join(netcdf_ws, 'tmmn_{}.nc'.format(year_str))
        tmax_path = os.path.join(netcdf_ws, 'tmmx_{}.nc'.format(year_str))
        sph_path = os.path.join(netcdf_ws, 'sph_{}.nc'.format(year_str))
        rs_path = os.path.join(netcdf_ws, 'srad_{}.nc'.format(year_str))
        wind_path = os.path.join(netcdf_ws, 'vs_{}.nc'.format(year_str))
        # Check that all input files are present
        missing_flag = False
        for input_path in [tmin_path, tmax_path, sph_path, rs_path, wind_path]:
            if not os.path.isfile(input_path):
                logging.debug(
                    '  Input NetCDF doesn\'t exist\n    {}'.format(input_path))
                missing_flag = True
        if missing_flag:
            logging.debug('  skipping')
            continue
        logging.debug("  {}".format(tmin_path))
        logging.debug("  {}".format(tmax_path))
        logging.debug("  {}".format(sph_path))
        logging.debug("  {}".format(rs_path))
        logging.debug("  {}".format(wind_path))

        # Create a single raster for each year with 365 bands
        # Each day will be stored in a separate band
        etr_raster = os.path.join(etr_ws, etr_fmt.format(year_str))
        eto_raster = os.path.join(eto_ws, eto_fmt.format(year_str))
        if etr_flag and (overwrite_flag or not os.path.isfile(etr_raster)):
            logging.debug('  {}'.format(etr_raster))
            gdc.build_empty_raster(etr_raster,
                                   band_cnt=366,
                                   output_dtype=np.float32,
                                   output_proj=gridmet_proj,
                                   output_cs=gridmet_cs,
                                   output_extent=gridmet_extent,
                                   output_fill_flag=True)
        if eto_flag and (overwrite_flag or not os.path.isfile(eto_raster)):
            logging.debug('  {}'.format(eto_raster))
            gdc.build_empty_raster(eto_raster,
                                   band_cnt=366,
                                   output_dtype=np.float32,
                                   output_proj=gridmet_proj,
                                   output_cs=gridmet_cs,
                                   output_extent=gridmet_extent,
                                   output_fill_flag=True)
        # DEADBEEF - Need to find a way to test if both of these conditionals
        #   did not pass and pass logging debug message to user

        # Read in the GRIDMET NetCDF file
        tmin_nc_f = netCDF4.Dataset(tmin_path, 'r')
        tmax_nc_f = netCDF4.Dataset(tmax_path, 'r')
        sph_nc_f = netCDF4.Dataset(sph_path, 'r')
        rs_nc_f = netCDF4.Dataset(rs_path, 'r')
        wind_nc_f = netCDF4.Dataset(wind_path, 'r')

        logging.info('  Reading NetCDFs into memory')
        # Immediatly clip input arrays to save memory
        tmin_nc = tmin_nc_f.variables[
            gridmet_band_dict['tmmn']][:, g_i:g_i + g_cols,
                                       g_j:g_j + g_rows].copy()
        tmax_nc = tmax_nc_f.variables[
            gridmet_band_dict['tmmx']][:, g_i:g_i + g_cols,
                                       g_j:g_j + g_rows].copy()
        sph_nc = sph_nc_f.variables[gridmet_band_dict['sph']][:,
                                                              g_i:g_i + g_cols,
                                                              g_j:g_j +
                                                              g_rows].copy()
        rs_nc = rs_nc_f.variables[gridmet_band_dict['srad']][:,
                                                             g_i:g_i + g_cols,
                                                             g_j:g_j +
                                                             g_rows].copy()
        wind_nc = wind_nc_f.variables[gridmet_band_dict['vs']][:, g_i:g_i +
                                                               g_cols,
                                                               g_j:g_j +
                                                               g_rows].copy()
        # tmin_nc = tmin_nc_f.variables[gridmet_band_dict['tmmn']][:]
        # tmax_nc = tmax_nc_f.variables[gridmet_band_dict['tmmx']][:]
        # sph_nc = sph_nc_f.variables[gridmet_band_dict['sph']][:]
        # rs_nc = rs_nc_f.variables[gridmet_band_dict['srad']][:]
        # wind_nc = wind_nc_f.variables[gridmet_band_dict['vs']][:]

        # Transpose arrays back to row x col
        tmin_nc = np.transpose(tmin_nc, (0, 2, 1))
        tmax_nc = np.transpose(tmax_nc, (0, 2, 1))
        sph_nc = np.transpose(sph_nc, (0, 2, 1))
        rs_nc = np.transpose(rs_nc, (0, 2, 1))
        wind_nc = np.transpose(wind_nc, (0, 2, 1))

        # A numpy array is returned when slicing a masked array
        #   if there are no masked pixels
        # This is a hack to force the numpy array back to a masked array
        # For now assume all arrays need to be converted
        if type(tmin_nc) != np.ma.core.MaskedArray:
            tmin_nc = np.ma.core.MaskedArray(
                tmin_nc, np.zeros(tmin_nc.shape, dtype=bool))
        if type(tmax_nc) != np.ma.core.MaskedArray:
            tmax_nc = np.ma.core.MaskedArray(
                tmax_nc, np.zeros(tmax_nc.shape, dtype=bool))
        if type(sph_nc) != np.ma.core.MaskedArray:
            sph_nc = np.ma.core.MaskedArray(sph_nc,
                                            np.zeros(sph_nc.shape, dtype=bool))
        if type(rs_nc) != np.ma.core.MaskedArray:
            rs_nc = np.ma.core.MaskedArray(rs_nc,
                                           np.zeros(rs_nc.shape, dtype=bool))
        if type(wind_nc) != np.ma.core.MaskedArray:
            wind_nc = np.ma.core.MaskedArray(
                wind_nc, np.zeros(wind_nc.shape, dtype=bool))

        # Check all valid dates in the year
        year_dates = date_range(dt.datetime(year_int, 1, 1),
                                dt.datetime(year_int + 1, 1, 1))
        for date_dt in year_dates:
            if start_dt is not None and date_dt < start_dt:
                logging.debug('  {} - before start date, skipping'.format(
                    date_dt.date()))
                continue
            elif end_dt is not None and date_dt > end_dt:
                logging.debug('  {} - after end date, skipping'.format(
                    date_dt.date()))
                continue
            else:
                logging.info('  {}'.format(date_dt.date()))

            doy = int(date_dt.strftime('%j'))
            doy_i = range(1, year_days + 1).index(doy)

            # Arrays are being read as masked array with a fill value of -9999
            # Convert to basic numpy array arrays with nan values
            try:
                tmin_ma = tmin_nc[doy_i, :, :]
            except IndexError:
                logging.info('    date not in netcdf, skipping')
                continue
            tmin_array = tmin_ma.data.astype(np.float32)
            tmin_nodata = float(tmin_ma.fill_value)
            tmin_array[tmin_array == tmin_nodata] = np.nan

            try:
                tmax_ma = tmax_nc[doy_i, :, :]
            except IndexError:
                logging.info('    date not in netcdf, skipping')
                continue
            tmax_array = tmax_ma.data.astype(np.float32)
            tmax_nodata = float(tmax_ma.fill_value)
            tmax_array[tmax_array == tmax_nodata] = np.nan

            try:
                sph_ma = sph_nc[doy_i, :, :]
            except IndexError:
                logging.info('    date not in netcdf, skipping')
                continue
            sph_array = sph_ma.data.astype(np.float32)
            sph_nodata = float(sph_ma.fill_value)
            sph_array[sph_array == sph_nodata] = np.nan

            try:
                rs_ma = rs_nc[doy_i, :, :]
            except IndexError:
                logging.info('    date not in netcdf, skipping')
                continue
            rs_array = rs_ma.data.astype(np.float32)
            rs_nodata = float(rs_ma.fill_value)
            rs_array[rs_array == rs_nodata] = np.nan

            try:
                wind_ma = wind_nc[doy_i, :, :]
            except IndexError:
                logging.info('    date not in netcdf, skipping')
                continue
            wind_array = wind_ma.data.astype(np.float32)
            wind_nodata = float(wind_ma.fill_value)
            wind_array[wind_array == wind_nodata] = np.nan
            del tmin_ma, tmax_ma, sph_ma, rs_ma, wind_ma

            # Since inputs are netcdf, need to create GDAL raster
            #   datasets in order to use gdal_common functions
            # Create an in memory dataset of the full ETo array
            tmin_ds = gdc.array_to_mem_ds(
                tmin_array,
                output_geo=gridmet_geo,
                # tmin_array, output_geo=gridmet_full_geo,
                output_proj=gridmet_proj)
            tmax_ds = gdc.array_to_mem_ds(
                tmax_array,
                output_geo=gridmet_geo,
                # tmax_array, output_geo=gridmet_full_geo,
                output_proj=gridmet_proj)
            sph_ds = gdc.array_to_mem_ds(
                sph_array,
                output_geo=gridmet_geo,
                # sph_array, output_geo=gridmet_full_geo,
                output_proj=gridmet_proj)
            rs_ds = gdc.array_to_mem_ds(
                rs_array,
                output_geo=gridmet_geo,
                # rs_array, output_geo=gridmet_full_geo,
                output_proj=gridmet_proj)
            wind_ds = gdc.array_to_mem_ds(
                wind_array,
                output_geo=gridmet_geo,
                # wind_array, output_geo=gridmet_full_geo,
                output_proj=gridmet_proj)

            # Then extract the subset from the in memory dataset
            tmin_array = gdc.raster_ds_to_array(tmin_ds,
                                                1,
                                                mask_extent=gridmet_extent,
                                                return_nodata=False)
            tmax_array = gdc.raster_ds_to_array(tmax_ds,
                                                1,
                                                mask_extent=gridmet_extent,
                                                return_nodata=False)
            sph_array = gdc.raster_ds_to_array(sph_ds,
                                               1,
                                               mask_extent=gridmet_extent,
                                               return_nodata=False)
            rs_array = gdc.raster_ds_to_array(rs_ds,
                                              1,
                                              mask_extent=gridmet_extent,
                                              return_nodata=False)
            wind_array = gdc.raster_ds_to_array(wind_ds,
                                                1,
                                                mask_extent=gridmet_extent,
                                                return_nodata=False)
            del tmin_ds, tmax_ds, sph_ds, rs_ds, wind_ds

            # Adjust units
            tmin_array -= 273.15
            tmax_array -= 273.15
            rs_array *= 0.0864

            # ETr/ETo
            if etr_flag:
                etr_array = et_common.refet_daily_func(tmin_array, tmax_array,
                                                       sph_array, rs_array,
                                                       wind_array, zw,
                                                       elev_array, lat_array,
                                                       doy, 'ETR')
            if eto_flag:
                eto_array = et_common.refet_daily_func(tmin_array, tmax_array,
                                                       sph_array, rs_array,
                                                       wind_array, zw,
                                                       elev_array, lat_array,
                                                       doy, 'ETO')
            # del tmin_array, tmax_array, sph_array, rs_array, wind_array

            # Save the projected array as 32-bit floats
            if etr_flag:
                gdc.array_to_comp_raster(etr_array.astype(np.float32),
                                         etr_raster,
                                         band=doy,
                                         stats_flag=False)
                # gdc.array_to_raster(
                #     etr_array.astype(np.float32), etr_raster,
                #     output_geo=gridmet_geo, output_proj=gridmet_proj,
                #     stats_flag=stats_flag)
                del etr_array
            if eto_flag:
                gdc.array_to_comp_raster(eto_array.astype(np.float32),
                                         eto_raster,
                                         band=doy,
                                         stats_flag=False)
                # gdc.array_to_raster(
                #     eto_array.astype(np.float32), eto_raster,
                #     output_geo=gridmet_geo, output_proj=gridmet_proj,
                #     stats_flag=stats_flag)
                del eto_array

        del tmin_nc
        del tmax_nc
        del sph_nc
        del rs_nc
        del wind_nc

        tmin_nc_f.close()
        tmax_nc_f.close()
        sph_nc_f.close()
        rs_nc_f.close()
        wind_nc_f.close()
        del tmin_nc_f, tmax_nc_f, sph_nc_f, rs_nc_f, wind_nc_f

        if stats_flag and etr_flag:
            gdc.raster_statistics(etr_raster)
        if stats_flag and eto_flag:
            gdc.raster_statistics(eto_raster)

    logging.debug('\nScript Complete')
def main(netcdf_ws=os.getcwd(),
         ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(),
         variables=['prcp'],
         daily_flag=False,
         monthly_flag=True,
         annual_flag=False,
         start_year=1981,
         end_year=2010,
         extent_path=None,
         output_extent=None,
         stats_flag=True,
         overwrite_flag=False):
    """Extract DAYMET temperature

    Args:
        netcdf_ws (str): folder of DAYMET netcdf files
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        variables (list): DAYMET variables to download
          ('prcp', 'srad', 'vp', 'tmmn', 'tmmx')
          Set as ['all'] to process all variables
        daily_flag (bool): if True, compute daily (DOY) climatologies
        monthly_flag (bool): if True, compute monthly climatologies
        annual_flag (bool): if True, compute annual climatologies
        start_year (int): YYYY
        end_year (int): YYYY
        extent_path (str): filepath a raster defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): if True, overwrite existing files

    Returns:
        None
    """
    logging.info('\nGenerating DAYMET climatologies')

    daily_fmt = 'daymet_{var}_30yr_normal_{doy:03d}.img'
    monthly_fmt = 'daymet_{var}_30yr_normal_{month:02d}.img'
    annual_fmt = 'daymet_{var}_30yr_normal.img'
    # daily_fmt = 'daymet_{var}_normal_{start}_{end}_{doy:03d}.img'
    # monthly_fmt = 'daymet_{var}_normal_{start}_{end}_{month:02d}.img'
    # annual_fmt = 'daymet_{var}_normal_{start}_{end}.img'

    # If a date is not set, process 1981-2010 climatology
    try:
        start_dt = dt.datetime(start_year, 1, 1)
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(1981, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime(end_year, 12, 31)
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2010, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    # Get DAYMET spatial reference from an ancillary raster
    mask_raster = os.path.join(ancillary_ws, 'daymet_mask.img')

    daymet_re = re.compile('daymet_v3_(?P<VAR>\w+)_(?P<YEAR>\d{4})_na.nc4$')

    # DAYMET rasters to extract
    var_full_list = ['prcp', 'tmmn', 'tmmx']
    # data_full_list = ['prcp', 'srad', 'vp', 'tmmn', 'tmmx']
    if not variables:
        logging.error('\nERROR: variables parameter is empty\n')
        sys.exit()
    elif type(variables) is not list:
        # DEADBEEF - I could try converting comma separated strings to lists?
        logging.warning('\nERROR: variables parameter must be a list\n')
        sys.exit()
    elif 'all' in variables:
        logging.error('\nDownloading all variables\n  {}'.format(
            ','.join(var_full_list)))
        var_list = var_full_list[:]
    elif not set(variables).issubset(set(var_full_list)):
        logging.error(
            '\nERROR: variables parameter is invalid\n  {}'.format(variables))
        sys.exit()
    else:
        var_list = variables[:]

    # Get extent/geo from mask raster
    daymet_ds = gdal.Open(mask_raster)
    daymet_osr = gdc.raster_ds_osr(daymet_ds)
    daymet_proj = gdc.osr_proj(daymet_osr)
    daymet_cs = gdc.raster_ds_cellsize(daymet_ds, x_only=True)
    daymet_extent = gdc.raster_ds_extent(daymet_ds)
    daymet_geo = daymet_extent.geo(daymet_cs)
    daymet_x, daymet_y = daymet_extent.origin()
    daymet_ds = None
    logging.debug('  Projection: {}'.format(daymet_proj))
    logging.debug('  Cellsize: {}'.format(daymet_cs))
    logging.debug('  Geo: {}'.format(daymet_geo))
    logging.debug('  Extent: {}'.format(daymet_extent))
    logging.debug('  Origin: {} {}'.format(daymet_x, daymet_y))

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        # Assume input extent is in decimal degrees
        output_extent = gdc.project_extent(gdc.Extent(output_extent),
                                           gdc.epsg_osr(4326), daymet_osr,
                                           0.001)
        output_extent = gdc.intersect_extents([daymet_extent, output_extent])
        output_extent.adjust_to_snap('EXPAND', daymet_x, daymet_y, daymet_cs)
        output_geo = output_extent.geo(daymet_cs)
        logging.debug('  Geo: {}'.format(output_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        output_extent = gdc.project_extent(
            gdc.raster_path_extent(extent_path),
            gdc.raster_path_osr(extent_path), daymet_osr,
            gdc.raster_path_cellsize(extent_path, x_only=True))
        output_extent = gdc.intersect_extents([daymet_extent, output_extent])
        output_extent.adjust_to_snap('EXPAND', daymet_x, daymet_y, daymet_cs)
        output_geo = output_extent.geo(daymet_cs)
        logging.debug('  Geo: {}'.format(output_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    else:
        output_extent = daymet_extent.copy()
        output_geo = daymet_geo[:]
    output_shape = output_extent.shape(cs=daymet_cs)
    xi, yi = gdc.array_geo_offsets(daymet_geo, output_geo, daymet_cs)
    output_rows, output_cols = output_extent.shape(daymet_cs)
    logging.debug('  Shape: {} {}'.format(output_rows, output_cols))
    logging.debug('  Offsets: {} {} (x y)'.format(xi, yi))

    # Process each variable
    for input_var in var_list:
        logging.info("\nVariable: {}".format(input_var))

        # Rename variables to match cimis
        if input_var == 'prcp':
            output_var = 'ppt'
        else:
            output_var = input_var
        logging.debug("Output name: {}".format(output_var))

        # Build output folder
        var_ws = os.path.join(output_ws, output_var)
        if not os.path.isdir(var_ws):
            os.makedirs(var_ws)

        # Build output arrays
        logging.debug('  Building arrays')
        if daily_flag:
            daily_sum = np.full((365, output_shape[0], output_shape[1]), 0,
                                np.float64)
            daily_count = np.full((365, output_shape[0], output_shape[1]), 0,
                                  np.uint8)
        if monthly_flag:
            monthly_sum = np.full((12, output_shape[0], output_shape[1]), 0,
                                  np.float64)
            monthly_count = np.full((12, output_shape[0], output_shape[1]), 0,
                                    np.uint8)
        if monthly_flag:
            annual_sum = np.full((output_shape[0], output_shape[1]), 0,
                                 np.float64)
            annual_count = np.full((output_shape[0], output_shape[1]), 0,
                                   np.uint8)

        # Process each file/year separately
        for input_name in sorted(os.listdir(netcdf_ws)):
            logging.debug("  {}".format(input_name))
            input_match = daymet_re.match(input_name)
            if not input_match:
                logging.debug('  Regular expression didn\'t match, skipping')
                continue
            elif input_match.group('VAR') != input_var:
                logging.debug('  Variable didn\'t match, skipping')
                continue
            year_str = input_match.group('YEAR')
            logging.info("  Year: {}".format(year_str))
            year_int = int(year_str)
            year_days = int(dt.datetime(year_int, 12, 31).strftime('%j'))
            if start_dt is not None and year_int < start_dt.year:
                logging.debug('    Before start date, skipping')
                continue
            elif end_dt is not None and year_int > end_dt.year:
                logging.debug('    After end date, skipping')
                continue

            # Build input file path
            input_raster = os.path.join(netcdf_ws, input_name)
            if not os.path.isfile(input_raster):
                logging.debug(
                    '  Input raster doesn\'t exist, skipping    {}'.format(
                        input_raster))
                continue

            # Build output folder
            if daily_flag:
                daily_ws = os.path.join(var_ws, 'daily')
                if not os.path.isdir(daily_ws):
                    os.makedirs(daily_ws)

            if monthly_flag:
                monthly_temp_sum = np.full(
                    (12, output_shape[0], output_shape[1]), 0, np.float64)
                monthly_temp_count = np.full(
                    (12, output_shape[0], output_shape[1]), 0, np.uint8)

            # Read in the DAYMET NetCDF file
            input_nc_f = netCDF4.Dataset(input_raster, 'r')
            # logging.debug(input_nc_f.variables)

            # Check all valid dates in the year
            year_dates = date_range(dt.datetime(year_int, 1, 1),
                                    dt.datetime(year_int + 1, 1, 1))
            for date_dt in year_dates:
                logging.debug('  {}'.format(date_dt.date()))
                # if start_dt is not None and date_dt < start_dt:
                #     logging.debug(
                #         '  {} - before start date, skipping'.format(
                #             date_dt.date()))
                #     continue
                # elif end_dt is not None and date_dt > end_dt:
                #     logging.debug('  {} - after end date, skipping'.format(
                #         date_dt.date()))
                #     continue
                # else:
                #     logging.info('  {}'.format(date_dt.date()))

                doy = int(date_dt.strftime('%j'))
                doy_i = range(1, year_days + 1).index(doy)
                month_i = date_dt.month - 1

                # Arrays are being read as masked array with a -9999 fill value
                # Convert to basic numpy array arrays with nan values
                try:
                    input_ma = input_nc_f.variables[input_var][doy_i, yi:yi +
                                                               output_rows,
                                                               xi:xi +
                                                               output_cols]
                except IndexError:
                    logging.info('    date not in netcdf, skipping')
                    continue
                input_nodata = float(input_ma.fill_value)
                output_array = input_ma.data.astype(np.float32)
                output_array[output_array == input_nodata] = np.nan
                output_mask = np.isfinite(output_array)

                # Convert Kelvin to Celsius
                if input_var in ['tmax', 'tmin']:
                    output_array -= 273.15

                # Save values
                if daily_flag:
                    daily_sum[doy_i, :, :] += output_array
                    daily_count[doy_i, :, :] += output_mask
                if monthly_flag:
                    monthly_temp_sum[month_i, :, :] += output_array
                    monthly_temp_count[month_i, :, :] += output_mask
                if annual_flag:
                    annual_sum[:, :] += output_array
                    annual_count[:, :] += output_mask

                # Cleanup
                # del input_ds, input_array
                del input_ma, output_array, output_mask

            # Compute mean monthly for the year
            if monthly_flag:
                # Sum precipitation
                if input_var == 'prcp':
                    monthly_sum += monthly_temp_sum
                else:
                    monthly_sum += monthly_temp_sum / monthly_temp_count
                # Is this the right count?
                monthly_count += np.any(monthly_temp_count, axis=0)
                del monthly_temp_sum, monthly_temp_count

            input_nc_f.close()
            del input_nc_f

        # Save the projected climatology arrays
        if daily_flag:
            for doy_i in range(daily_sum.shape[0]):
                daily_name = daily_fmt.format(var=output_var,
                                              start=start_year,
                                              end=end_year,
                                              doy=doy_i + 1)
                daily_path = os.path.join(daily_ws, daily_name)
                gdc.array_to_raster(daily_sum[doy_i, :, :] /
                                    daily_count[doy_i, :, :],
                                    daily_path,
                                    output_geo=output_geo,
                                    output_proj=daymet_proj,
                                    stats_flag=stats_flag)
            del daily_sum, daily_count
        if monthly_flag:
            for month_i in range(monthly_sum.shape[0]):
                monthly_name = monthly_fmt.format(var=output_var,
                                                  start=start_year,
                                                  end=end_year,
                                                  month=month_i + 1)
                monthly_path = os.path.join(var_ws, monthly_name)
                gdc.array_to_raster(monthly_sum[month_i, :, :] /
                                    monthly_count[month_i, :, :],
                                    monthly_path,
                                    output_geo=output_geo,
                                    output_proj=daymet_proj,
                                    stats_flag=stats_flag)
            del monthly_sum, monthly_count
        if annual_flag:
            annual_name = annual_fmt.format(var=output_var,
                                            start=start_year,
                                            end=end_year)
            annual_path = os.path.join(var_ws, annual_name)
            gdc.array_to_raster(annual_sum / annual_count,
                                annual_path,
                                output_geo=output_geo,
                                output_proj=daymet_proj,
                                stats_flag=stats_flag)
            del annual_sum, annual_count

    logging.debug('\nScript Complete')
def main(img_ws=os.getcwd(),
         ancillary_ws=os.getcwd(),
         output_ws=os.getcwd(),
         etr_flag=False,
         eto_flag=False,
         start_date=None,
         end_date=None,
         extent_path=None,
         output_extent=None,
         stats_flag=True,
         overwrite_flag=False,
         use_cimis_eto_flag=False):
    """Compute daily ETr/ETo from CIMIS data

    Args:
        img_ws (str): root folder of GRIDMET data
        ancillary_ws (str): folder of ancillary rasters
        output_ws (str): folder of output rasters
        etr_flag (bool): if True, compute alfalfa reference ET (ETr)
        eto_flag (bool): if True, compute grass reference ET (ETo)
        start_date (str): ISO format date (YYYY-MM-DD)
        end_date (str): ISO format date (YYYY-MM-DD)
        extent_path (str): file path defining the output extent
        output_extent (list): decimal degrees values defining output extent
        stats_flag (bool): if True, compute raster statistics.
            Default is True.
        overwrite_flag (bool): If True, overwrite existing files
        use_cimis_eto_flag (bool): if True, use CIMIS ETo raster if one of
            the component rasters is missing and ETo/ETr cannot be computed

    Returns:
        None
    """
    logging.info('\nComputing CIMIS ETo/ETr')
    np.seterr(invalid='ignore')

    # Use CIMIS ETo raster directly instead of computing from components
    # Currently this will only be applied if one of the inputs is missing
    use_cimis_eto_flag = True

    # Compute ETr and/or ETo
    if not etr_flag and not eto_flag:
        logging.info('  ETo/ETr flag(s) not set, defaulting to ETr')
        etr_flag = True

    # If a date is not set, process 2017
    try:
        start_dt = dt.datetime.strptime(start_date, '%Y-%m-%d')
        logging.debug('  Start date: {}'.format(start_dt))
    except:
        start_dt = dt.datetime(2017, 1, 1)
        logging.info('  Start date: {}'.format(start_dt))
    try:
        end_dt = dt.datetime.strptime(end_date, '%Y-%m-%d')
        logging.debug('  End date:   {}'.format(end_dt))
    except:
        end_dt = dt.datetime(2017, 12, 31)
        logging.info('  End date:   {}'.format(end_dt))

    etr_folder = 'etr'
    eto_folder = 'eto'
    etr_fmt = 'etr_{}_daily_cimis.img'
    eto_fmt = 'eto_{}_daily_cimis.img'

    # DEM for air pressure calculation
    mask_raster = os.path.join(ancillary_ws, 'cimis_mask.img')
    dem_raster = os.path.join(ancillary_ws, 'cimis_elev.img')
    lat_raster = os.path.join(ancillary_ws, 'cimis_lat.img')
    # lon_raster = os.path.join(ancillary_ws, 'cimis_lon.img')

    # Interpolate zero windspeed pixels
    # interpolate_zero_u2_flag = False

    # Interpolate edge and coastal cells
    # interpolate_edge_flag = False

    # Resample type
    # 0 = GRA_NearestNeighbour, Nearest neighbour (select on one input pixel)
    # 1 = GRA_Bilinear,Bilinear (2x2 kernel)
    # 2 = GRA_Cubic, Cubic Convolution Approximation (4x4 kernel)
    # 3 = GRA_CubicSpline, Cubic B-Spline Approximation (4x4 kernel)
    # 4 = GRA_Lanczos, Lanczos windowed sinc interpolation (6x6 kernel)
    # 5 = GRA_Average, Average (computes the average of all non-NODATA contributing pixels)
    # 6 = GRA_Mode, Mode (selects the value which appears most often of all the sampled points)
    resample_type = gdal.GRA_CubicSpline

    # Wind speed is measured at 2m
    zw = 2

    # Output workspaces
    etr_ws = os.path.join(output_ws, etr_folder)
    eto_ws = os.path.join(output_ws, eto_folder)
    if etr_flag and not os.path.isdir(etr_ws):
        os.makedirs(etr_ws)
    if eto_flag and not os.path.isdir(eto_ws):
        os.makedirs(eto_ws)

    # Check ETr/ETo functions
    test_flag = False

    # Check that the daily_refet_func produces the correct values
    if test_flag:
        doy_test = 245
        elev_test = 1050.0
        lat_test = 39.9396 * math.pi / 180
        tmin_test = 11.07
        tmax_test = 34.69
        rs_test = 22.38
        u2_test = 1.94
        zw_test = 2.5
        tdew_test = -3.22
        ea_test = et_common.saturation_vapor_pressure_func(tdew_test)
        pair_test = 101.3 * np.power((285 - 0.0065 * elev_test) / 285, 5.26)
        q_test = 0.622 * ea_test / (pair_test - (0.378 * ea_test))
        etr = float(
            et_common.daily_refet_func(tmin_test, tmax_test, q_test, rs_test,
                                       u2_test, zw_test, elev_test, doy_test,
                                       lat_test, 'ETR'))
        eto = float(
            et_common.daily_refet_func(tmin_test, tmax_test, q_test, rs_test,
                                       u2_test, zw_test, elev_test, doy_test,
                                       lat_test, 'ETO'))
        print('ETr: 8.89', etr)
        print('ETo: 6.16', eto)
        sys.exit()

    # Get CIMIS grid properties from mask
    cimis_mask_ds = gdal.Open(mask_raster)
    cimis_osr = gdc.raster_ds_osr(cimis_mask_ds)
    cimis_proj = gdc.osr_proj(cimis_osr)
    cimis_cs = gdc.raster_ds_cellsize(cimis_mask_ds, x_only=True)
    cimis_extent = gdc.raster_ds_extent(cimis_mask_ds)
    cimis_full_geo = cimis_extent.geo(cimis_cs)
    cimis_x, cimis_y = cimis_extent.origin()
    cimis_mask_ds = None
    logging.debug('  Projection: {}'.format(cimis_proj))
    logging.debug('  Cellsize: {}'.format(cimis_cs))
    logging.debug('  Geo: {}'.format(cimis_full_geo))
    logging.debug('  Extent: {}'.format(cimis_extent))

    # Manually set CIMIS grid properties
    # cimis_extent = gdc.Extent((-400000, -650000, 600000, 454000))
    # cimis_cs = 2000
    # cimis_geo = gdc.extent_geo(cimis_extent, cellsize)
    # cimis_epsg = 3310  # NAD_1983_California_Teale_Albers
    # cimis_x, cimis_y = (0,0)

    # Subset data to a smaller extent
    if output_extent is not None:
        logging.info('\nComputing subset extent & geo')
        logging.debug('  Extent: {}'.format(output_extent))
        cimis_extent = gdc.Extent(output_extent)
        cimis_extent.adjust_to_snap('EXPAND', cimis_x, cimis_y, cimis_cs)
        cimis_geo = cimis_extent.geo(cimis_cs)
        logging.debug('  Geo: {}'.format(cimis_geo))
        logging.debug('  Extent: {}'.format(output_extent))
    elif extent_path is not None:
        logging.info('\nComputing subset extent & geo')
        if extent_path.lower().endswith('.shp'):
            cimis_extent = gdc.feature_path_extent(extent_path)
            extent_osr = gdc.feature_path_osr(extent_path)
            extent_cs = None
        else:
            cimis_extent = gdc.raster_path_extent(extent_path)
            extent_osr = gdc.raster_path_osr(extent_path)
            extent_cs = gdc.raster_path_cellsize(extent_path, x_only=True)
        cimis_extent = gdc.project_extent(cimis_extent, extent_osr, cimis_osr,
                                          extent_cs)
        cimis_extent.adjust_to_snap('EXPAND', cimis_x, cimis_y, cimis_cs)
        cimis_geo = cimis_extent.geo(cimis_cs)
        logging.debug('  Geo: {}'.format(cimis_geo))
        logging.debug('  Extent: {}'.format(cimis_extent))
    else:
        cimis_geo = cimis_full_geo

    # Latitude
    lat_array = gdc.raster_to_array(lat_raster,
                                    mask_extent=cimis_extent,
                                    return_nodata=False)
    lat_array = lat_array.astype(np.float32)
    lat_array *= math.pi / 180

    # Elevation data
    elev_array = gdc.raster_to_array(dem_raster,
                                     mask_extent=cimis_extent,
                                     return_nodata=False)
    elev_array = elev_array.astype(np.float32)

    # Process each year in the input workspace
    logging.info("")
    for year_str in sorted(os.listdir(img_ws)):
        logging.debug('{}'.format(year_str))
        if not re.match('^\d{4}$', year_str):
            logging.debug('  Not a 4 digit year folder, skipping')
            continue
        year_ws = os.path.join(img_ws, year_str)
        year_int = int(year_str)
        # year_days = int(dt.datetime(year_int, 12, 31).strftime('%j'))
        if start_dt is not None and year_int < start_dt.year:
            logging.debug('  Before start date, skipping')
            continue
        elif end_dt is not None and year_int > end_dt.year:
            logging.debug('  After end date, skipping')
            continue
        logging.info('{}'.format(year_str))

        # Output paths
        etr_raster = os.path.join(etr_ws, etr_fmt.format(year_str))
        eto_raster = os.path.join(eto_ws, eto_fmt.format(year_str))
        if etr_flag and (overwrite_flag or not os.path.isfile(etr_raster)):
            logging.debug('  {}'.format(etr_raster))
            gdc.build_empty_raster(etr_raster,
                                   band_cnt=366,
                                   output_dtype=np.float32,
                                   output_proj=cimis_proj,
                                   output_cs=cimis_cs,
                                   output_extent=cimis_extent,
                                   output_fill_flag=True)
        if eto_flag and (overwrite_flag or not os.path.isfile(eto_raster)):
            logging.debug('  {}'.format(eto_raster))
            gdc.build_empty_raster(eto_raster,
                                   band_cnt=366,
                                   output_dtype=np.float32,
                                   output_proj=cimis_proj,
                                   output_cs=cimis_cs,
                                   output_extent=cimis_extent,
                                   output_fill_flag=True)

        # Process each date in the year
        for date_str in sorted(os.listdir(year_ws)):
            logging.debug('{}'.format(date_str))
            try:
                date_dt = dt.datetime.strptime(date_str, '%Y_%m_%d')
            except ValueError:
                logging.debug(
                    '  Invalid folder date format (YYYY_MM_DD), skipping')
                continue
            if start_dt is not None and date_dt < start_dt:
                logging.debug('  Before start date, skipping')
                continue
            elif end_dt is not None and date_dt > end_dt:
                logging.debug('  After end date, skipping')
                continue
            logging.info(date_str)
            date_ws = os.path.join(year_ws, date_str)
            doy = int(date_dt.strftime('%j'))

            # Set file paths
            tmax_path = os.path.join(date_ws, 'Tx.img')
            tmin_path = os.path.join(date_ws, 'Tn.img')
            tdew_path = os.path.join(date_ws, 'Tdew.img')
            rso_path = os.path.join(date_ws, 'Rso.img')
            rs_path = os.path.join(date_ws, 'Rs.img')
            u2_path = os.path.join(date_ws, 'U2.img')
            eto_path = os.path.join(date_ws, 'ETo.img')
            # k_path = os.path.join(date_ws, 'K.img')
            # rnl_path = os.path.join(date_ws, 'Rnl.img')
            input_list = [
                tmin_path, tmax_path, tdew_path, u2_path, rs_path, rso_path
            ]

            # If any input raster is missing, skip the day
            #   Unless ETo is present (and use_cimis_eto_flag is True)
            day_skip_flag = False
            for t_path in input_list:
                if not os.path.isfile(t_path):
                    logging.info('    {} is missing'.format(t_path))
                    day_skip_flag = True

            if (day_skip_flag and use_cimis_eto_flag
                    and os.path.isfile(eto_path)):
                logging.info('    Using CIMIS ETo directly')
                eto_array = gdc.raster_to_array(eto_path,
                                                1,
                                                cimis_extent,
                                                return_nodata=False)
                eto_array = eto_array.astype(np.float32)
                if not np.any(eto_array):
                    logging.info('    {} is empty or missing'.format(eto_path))
                    logging.info('    Skipping date')
                    continue
                # ETr
                if etr_flag:
                    gdc.array_to_comp_raster(1.2 * eto_array,
                                             etr_raster,
                                             band=doy,
                                             stats_flag=False)
                    # gdc.array_to_raster(
                    #     1.2 * eto_array, etr_raster,
                    #     output_geo=cimis_geo, output_proj=cimis_proj,
                    #     stats_flag=stats_flag)
                # ETo
                if eto_flag:
                    gdc.array_to_comp_raster(eto_array,
                                             eto_raster,
                                             band=doy,
                                             stats_flag=False)
                    # gdc.array_to_raster(
                    #     eto_array, eto_raster,
                    #     output_geo=cimis_geo, output_proj=cimis_proj,
                    #     stats_flag=stats_flag)
                del eto_array
                continue
            elif not day_skip_flag:
                # Read in rasters
                # DEADBEEF - Read with extent since some arrays are too big
                # i.e. 2012-03-21, 2013-03-20, 2014-02-27
                tmin_array = gdc.raster_to_array(tmin_path,
                                                 1,
                                                 cimis_extent,
                                                 return_nodata=False)
                tmax_array = gdc.raster_to_array(tmax_path,
                                                 1,
                                                 cimis_extent,
                                                 return_nodata=False)
                tdew_array = gdc.raster_to_array(tdew_path,
                                                 1,
                                                 cimis_extent,
                                                 return_nodata=False)
                rso_array = gdc.raster_to_array(rso_path,
                                                1,
                                                cimis_extent,
                                                return_nodata=False)
                rs_array = gdc.raster_to_array(rs_path,
                                               1,
                                               cimis_extent,
                                               return_nodata=False)
                u2_array = gdc.raster_to_array(u2_path,
                                               1,
                                               cimis_extent,
                                               return_nodata=False)
                # k_array = gdc.raster_to_array(
                #     k_path, 1, cimis_extent, return_nodata=False)
                # rnl_array = gdc.raster_to_array(
                #     rnl_path, 1, cimis_extent, return_nodata=False)

                # Check that all input arrays have data
                for t_name, t_array in [[tmin_path, tmin_array],
                                        [tmax_path, tmax_array],
                                        [tdew_path, tdew_array],
                                        [u2_path, u2_array],
                                        [rs_path, rs_array]]:
                    if not np.any(t_array):
                        logging.warning(
                            '    {} is empty or missing'.format(t_name))
                        day_skip_flag = True
                if day_skip_flag:
                    logging.warning('    Skipping date')
                    continue

                # DEADBEEF - Some arrays have a 500m cellsize
                # i.e. 2011-07-25, 2010-01-01 -> 2010-07-27
                tmin_array = rescale_array_func(tmin_array, elev_array, 'tmin')
                tmax_array = rescale_array_func(tmax_array, elev_array, 'tmax')
                tdew_array = rescale_array_func(tdew_array, elev_array, 'tdew')
                rso_array = rescale_array_func(rso_array, elev_array, 'rso')
                rs_array = rescale_array_func(rs_array, elev_array, 'rs')
                u2_array = rescale_array_func(u2_array, elev_array, 'u2')
                # k_array = rescale_array_func(k_array, elev_array, 'k')
                # rnl_array = rescale_array_func(rnl_array, elev_array, 'rnl')

                # Back calculate q from tdew by first calculating ea from tdew
                es_array = et_common.saturation_vapor_pressure_func(tdew_array)
                pair_array = et_common.air_pressure_func(elev_array)
                q_array = 0.622 * es_array / (pair_array - (0.378 * es_array))
                del es_array, pair_array, tdew_array

                # Back calculate rhmin/rhmax from tdew
                # ea_tmax = et_common.saturation_vapor_pressure_func(tmax_array)
                # ea_tmin = et_common.saturation_vapor_pressure_func(tmin_array)
                # rhmin = ea_tdew * 2 / (ea_tmax + ea_tmin);
                # rhmax = ea_tdew * 2 / (ea_tmax + ea_tmin);
                # del ea_tmax, ea_tmin

                # ETr
                if etr_flag:
                    etr_array = et_common.refet_daily_func(tmin_array,
                                                           tmax_array,
                                                           q_array,
                                                           rs_array,
                                                           u2_array,
                                                           zw,
                                                           elev_array,
                                                           lat_array,
                                                           doy,
                                                           ref_type='ETR',
                                                           rso_type='ARRAY',
                                                           rso=rso_array)
                    gdc.array_to_comp_raster(etr_array.astype(np.float32),
                                             etr_raster,
                                             band=doy,
                                             stats_flag=False)
                    # gdc.array_to_raster(
                    #     etr_array.astype(np.float32), etr_raster,
                    #     output_geo=cimis_geo, output_proj=cimis_proj,
                    #     stats_flag=stats_flag)
                    del etr_array
                # ETo
                if eto_flag:
                    eto_array = et_common.refet_daily_func(tmin_array,
                                                           tmax_array,
                                                           q_array,
                                                           rs_array,
                                                           u2_array,
                                                           zw,
                                                           elev_array,
                                                           lat_array,
                                                           doy,
                                                           ref_type='ETO',
                                                           rso_type='ARRAY',
                                                           rso=rso_array)
                    gdc.array_to_comp_raster(eto_array.astype(np.float32),
                                             eto_raster,
                                             band=doy,
                                             stats_flag=False)
                    # gdc.array_to_raster(
                    #     eto_array.astype(np.float32), eto_raster,
                    #     output_geo=cimis_geo, output_proj=cimis_proj,
                    #     stats_flag=stats_flag)
                    del eto_array
                # Cleanup
                del tmin_array, tmax_array, u2_array, rs_array, q_array
                # del rnl, rs, rso
            else:
                logging.info('    Skipping date')
                continue

        if stats_flag and etr_flag:
            gdc.raster_statistics(etr_raster)
        if stats_flag and eto_flag:
            gdc.raster_statistics(eto_raster)

    logging.debug('\nScript Complete')