示例#1
0
def tst(arg, test_loader, net, write_image=False):
    bbox_format = list()
    bbox_format.append(
        Bbox_Format(arg.model.net.im_size, arg.model.net.feature_size[0],
                    arg.model.flt_anchor, arg.model.net.num_class,
                    arg.model.mask_iou_threshold))
    bbox_format.append(
        Bbox_Format(arg.model.net.im_size, arg.model.net.feature_size[1],
                    arg.model.flt_anchor, arg.model.net.num_class,
                    arg.model.mask_iou_threshold))

    net.eval()
    target_dict = dict()
    predict_list = list()
    print('testing......')
    image_counter = 0
    for batch_idx, batch_data_dict in tqdm(enumerate(test_loader)):
        # if batch_idx > 10:
        #     break
        batch_image = batch_data_dict['image']
        batch_label = batch_data_dict['label']
        batch_image_path = batch_data_dict['image_path']

        np_im = torch_im_to_cv2_im(batch_image[0]).copy()

        label_list = list()
        for label_box in batch_label[0]:
            cls, xmid, ymid, w, h = label_box.tolist()
            if xmid + ymid + w + h > 0.000001:
                im_w, im_h = arg.model.net.im_size
                label_list.append(
                    [cls, xmid * im_w, ymid * im_h, w * im_w, h * im_h])
                xmin, ymin, xmax, ymax = cxcywh_to_x1y1x2y2(xmid, ymid, w, h)
                xmin, ymin, xmax, ymax = int(xmin * im_w), int(
                    ymin * im_h), int(xmax * im_w), int(ymax * im_h)
                np_im = cv2.rectangle(np_im, (xmin, ymin), (xmax, ymax),
                                      (0, 255, 0))
        target_dict[str(batch_idx) + '.jpg'] = label_list

        batch_image, batch_label = list(
            map(lambda x: x.to(arg.train.device), (batch_image, batch_label)))

        net_out = net.forward(batch_image)
        predict_bbox_list = list()
        confidence_list = list()
        for model_out_idx, feature in enumerate(net_out):

            batch_predict = model_out_to_model_predict(
                feature, num_anchors=arg.model.net.num_anchor)
            batch_predict_bbox, batch_confidence = bbox_format[
                model_out_idx].to_bbox(*batch_predict)

            predict_bbox_list.append(
                batch_predict_bbox[0])  # notice: batch size == 1
            confidence_list.append(
                batch_confidence[0])  # notice: batch size == 1

        predict_bboxes = torch.cat(predict_bbox_list, 0)
        predict_bboxes = cxcywh_to_x1y1x2y2(predict_bboxes)
        confidences = torch.cat(confidence_list, 0)

        bboxes, confidences = confidence_filter(
            predict_bboxes, confidences,
            arg.model.out_confidence_filter_threshold)
        bboxes, confidences = none_max_suppression(bboxes, confidences,
                                                   arg.model.nms_iou_threshold)

        for box, conf in zip(bboxes, confidences):
            xmin, ymin, xmax, ymax = box.tolist()
            conf = conf.item()
            predict_list.append([
                str(batch_idx) + '.jpg', 0, conf, (xmin + xmax) // 2,
                (ymin + ymax) // 2, xmax - xmin, ymax - ymin
            ])

        if write_image:
            for box, conf in zip(bboxes, confidences):
                xmin, ymin, xmax, ymax = box.tolist()
                conf = conf.item()
                xmin = round(xmin)
                xmax = round(xmax)
                ymin = round(ymin)
                ymax = round(ymax)
                np_im = cv2.rectangle(np_im, (xmin, ymin), (xmax, ymax),
                                      (255, 255, 0))
                np_im = cv2.putText(np_im, str(round(conf, 3)),
                                    ((xmin + xmax) // 2, (ymin + ymax) // 2),
                                    cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255),
                                    1)

            cv2.imshow('', np_im)
            cv2.waitKey()

            os.makedirs('image_out', exist_ok=True)
            cv2.imwrite('image_out/' + str(image_counter) + '.jpg', np_im)
            image_counter += 1

    rec, prec, ap = det_eval(predict_list, target_dict, 0, 0.5)
    return ap
示例#2
0
def tst():
    arg = ARG()

    net = YoloV3_Tiny(class_num=arg.model.net.num_class,
                      anchors_num=arg.model.net.num_anchor)

    net = net.to(arg.train.device)
    if arg.model.weight_path is not None:
        net.load_state_dict(one_card_model(torch.load(arg.model.weight_path)))
    net = torch.nn.DataParallel(net)
    net.eval()

    bbox_format = list()
    bbox_format.append(
        Bbox_Format(arg.model.net.im_size, arg.model.net.feature_size[0],
                    arg.model.anchor, arg.model.net.num_class,
                    arg.model.mask_iou_threshold))
    bbox_format.append(
        Bbox_Format(arg.model.net.im_size, arg.model.net.feature_size[1],
                    arg.model.anchor, arg.model.net.num_class,
                    arg.model.mask_iou_threshold))

    for image_path in os.listdir(arg.test.image_dir):
        abs_image_path = os.path.join(arg.test.image_dir, image_path)
        image = cv2.imread(abs_image_path)
        assert image is not None
        torch_im, pad_hwc = yolo_mode_cv2_im_to_torch_im(
            image, arg.model.net.im_size)
        batch_image = torch_im.unsqueeze(0)  # make up as a batch
        with torch.no_grad():
            net_out = net.forward(batch_image)

        predict_bbox_list = list()
        confidence_list = list()
        for model_out_idx, feature in enumerate(net_out):

            batch_predict = model_out_to_model_predict(feature,
                                                       num_anchors=len(
                                                           arg.model.anchor))
            batch_predict_bbox, batch_confidence = bbox_format[
                model_out_idx].to_bbox(*batch_predict)

            predict_bbox_list.append(
                batch_predict_bbox[0])  # notice: batch size == 1
            confidence_list.append(
                batch_confidence[0])  # notice: batch size == 1

        predict_bboxes = torch.cat(predict_bbox_list, 0)
        predict_bboxes = cxcywh_to_x1y1x2y2(predict_bboxes)
        confidences = torch.cat(confidence_list, 0)

        bboxes, confidences = confidence_filter(
            predict_bboxes, confidences,
            arg.model.out_confidence_filter_threshold)
        bboxes, confidences = none_max_suppression(bboxes, confidences,
                                                   arg.model.nms_iou_threshold)

        np_im = torch_im_to_cv2_im(torch_im).copy()

        for box in bboxes:
            x1, y1, x2, y2 = list(map(lambda x: int(x), box))
            image_pre_show = cv2.rectangle(np_im, (x1, y1), (x2, y2),
                                           (255, 255, 0))

            # test_out_dir = arg.test.out_dir
            # cv2.imwrite(test_out_dir+'/'+image_path, image_pre_show)
            cv2.imshow(image_path, image_pre_show)
            cv2.waitKey()
示例#3
0
    def step_vis(self, batch_data_dict, net_out, whole_loss, losses_list,
                 predict_list, target_list):
        batch_image = batch_data_dict['image'].to(
            next(self.net.parameters()).device)
        batch_label = batch_data_dict['label'].to(
            next(self.net.parameters()).device)

        predict_bbox_list = list()
        confidence_list = list()
        for model_out_idx, feature in enumerate(net_out):
            batch_predict = model_out_to_model_predict(
                feature, num_anchors=self.arg.model.net.num_anchor)
            batch_predict_bbox, batch_confidence = self.bbox_format[
                model_out_idx].to_bbox(*batch_predict)

            predict_bbox_list.append(batch_predict_bbox[0])
            confidence_list.append(batch_confidence[0])

        predict_bboxes = torch.cat(predict_bbox_list, 0)
        predict_bboxes = cxcywh_to_x1y1x2y2(predict_bboxes)
        confidences = torch.cat(confidence_list, 0)

        bboxes, confidences = confidence_filter(
            predict_bboxes, confidences,
            self.arg.model.out_confidence_filter_threshold)

        np_im = torch_im_to_cv2_im(batch_image[0]).copy()
        for box in bboxes:
            x1, y1, x2, y2 = list(map(lambda x: int(x), box))
            np_im = cv2.rectangle(np_im, (x1, y1), (x2, y2), (255, 255, 0))
        self.vis.image('_0_predict_before_nms', np_im)

        bboxes, confidences = none_max_suppression(
            bboxes, confidences, self.arg.model.nms_iou_threshold)

        np_im = torch_im_to_cv2_im(batch_image[0]).copy()
        for box, conf in zip(bboxes, confidences):
            x1, y1, x2, y2 = list(map(lambda x: int(x), box.tolist()))
            np_im = cv2.rectangle(np_im, (x1, y1), (x2, y2), (0, 255, 255))
            np_im = cv2.putText(np_im, str(round(conf.item(), 3)),
                                ((x1 + x2) // 2, (y1 + y2) // 2),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
        self.vis.image('_0_predict_after_nms', np_im)

        image_show = torch_im_to_cv2_im(batch_image[0]).copy()
        for hand_idx in range(batch_label[0].shape[0]):
            cx, cy, w, h = (batch_label[0][hand_idx].data.cpu().numpy()[1:])
            x1, y1, x2, y2 = cxcywh_to_x1y1x2y2(cx, cy, w, h)
            x1, y1, x2, y2 = list(
                map(lambda x: int(x * self.arg.model.net.im_size[0]),
                    (x1, y1, x2, y2)))
            image_show = cv2.rectangle(image_show, (x1, y1), (x2, y2),
                                       (0, 255, 0))
        self.vis.image('_0_target', image_show)

        self.vis.line('0_train_loss', y=whole_loss.item())

        for layer_idx, (losses, batch_predict, batch_target) in enumerate(
                zip(losses_list, predict_list, target_list)):

            mask, negative_mask, tar_dx, tar_dy, tar_w, tar_h, tar_confidence, tar_class = batch_target
            pre_dx, pre_dy, pre_w, pre_h, pre_confidence, pre_class = batch_predict

            batch_show_idx = 0
            for anchor_idx in range(self.arg.model.net.num_anchor):
                self.vis.image(
                    'layer' + str(layer_idx) + '_anchor' + str(anchor_idx) +
                    '_confidence/target', tar_confidence[batch_show_idx,
                                                         anchor_idx])
                self.vis.image(
                    'layer' + str(layer_idx) + '_anchor' + str(anchor_idx) +
                    '_confidence/predict', pre_confidence[batch_show_idx,
                                                          anchor_idx])
                # self.vis.image('layer'+str(layer_idx)+'_anchor'+str(anchor_idx)+'_class/target', tar_class[batch_show_idx, anchor_idx, :, :, 0])
                # self.vis.image('layer'+str(layer_idx)+'_anchor'+str(anchor_idx)+'_class/predict', pre_class[batch_show_idx, anchor_idx])

            loss, loss_dx, loss_dy, loss_w, loss_h, loss_confidence, loss_class = losses
            self.vis.line('layer' + str(layer_idx) + '/loss', y=loss.item())
            self.vis.line('layer' + str(layer_idx) + '/loss_dx',
                          y=loss_dx.item())
            self.vis.line('layer' + str(layer_idx) + '/loss_dy',
                          y=loss_dy.item())
            self.vis.line('layer' + str(layer_idx) + '/loss_w',
                          y=loss_w.item())
            self.vis.line('layer' + str(layer_idx) + '/loss_h',
                          y=loss_h.item())
            self.vis.line('layer' + str(layer_idx) + '/loss_confidence',
                          y=loss_confidence.item())
示例#4
0
    def tst(self, net, write_image=False):
        net.eval()
        target_dict = dict()
        predict_list = list()
        print('testing......')
        image_counter = 0
        for batch_idx, batch_data_dict in tqdm(enumerate(self.dataloader)):

            # # FOR TEST  FOR TEST  FOR TEST
            # if batch_idx > 10:
            #     break
            # # FOR TEST  FOR TEST  FOR TEST

            batch_image = batch_data_dict['image'].to(next(net.parameters()).device)
            batch_label = batch_data_dict['label'].to(next(net.parameters()).device)
            batch_image_path = batch_data_dict['image_path']

            label_list = list()
            for label_box in batch_label[0]:
                cls, xmid, ymid, w, h = label_box.tolist()
                if xmid + ymid + w + h > 0.000001:
                    im_w, im_h = self.arg.model.net.im_size
                    label_list.append([cls, xmid * im_w, ymid * im_h, w * im_w, h * im_h])

            target_dict[str(batch_idx) + '.jpg'] = label_list

            with torch.no_grad():
                net_out = net.forward(batch_image)
            predict_bbox_list = list()
            confidence_list = list()
            for model_out_idx, feature in enumerate(net_out):
                batch_predict = model_out_to_model_predict(feature, num_anchors=self.arg.model.net.num_anchor)
                batch_predict_bbox, batch_confidence = self.bbox_format[model_out_idx].to_bbox(*batch_predict)

                predict_bbox_list.append(batch_predict_bbox[0])  # notice: batch size == 1
                confidence_list.append(batch_confidence[0])  # notice: batch size == 1

            predict_bboxes = torch.cat(predict_bbox_list, 0)
            predict_bboxes = cxcywh_to_x1y1x2y2(predict_bboxes)
            confidences = torch.cat(confidence_list, 0)

            bboxes, confidences = confidence_filter(predict_bboxes, confidences,
                                                    self.arg.model.out_confidence_filter_threshold)
            bboxes, confidences = none_max_suppression(bboxes, confidences, self.arg.model.nms_iou_threshold)

            for box, conf in zip(bboxes, confidences):
                xmin, ymin, xmax, ymax = box.tolist()
                conf = conf.item()
                predict_list.append(
                    [str(batch_idx) + '.jpg', 0, conf, (xmin + xmax) // 2, (ymin + ymax) // 2, xmax - xmin,
                     ymax - ymin])

            if write_image:
                np_im = torch_im_to_cv2_im(batch_image[0]).copy()
                np_im = cv2.cvtColor(np_im, cv2.COLOR_RGB2BGR)
                np_im = cv2.resize(np_im, (448, 448))

                for label_box in batch_label[0]:
                    cls, xmid, ymid, w, h = label_box.tolist()
                    if xmid + ymid + w + h > 0.000001:
                        im_h, im_w, _ = np_im.shape
                        label_list.append([cls, xmid * im_w, ymid * im_h, w * im_w, h * im_h])
                        xmin, ymin, xmax, ymax = cxcywh_to_x1y1x2y2(xmid, ymid, w, h)
                        gt_xmin, gt_ymin, gt_xmax, gt_ymax = int(xmin * im_w), int(ymin * im_h), int(xmax * im_w), int(ymax * im_h)
                        np_im = cv2.rectangle(np_im, (gt_xmin, gt_ymin), (gt_xmax, gt_ymax), (0, 255, 0))

                for box, conf in zip(bboxes, confidences):
                    xmin, ymin, xmax, ymax = box.tolist()
                    conf = conf.item()
                    xmin = round(xmin*2)
                    xmax = round(xmax*2)
                    ymin = round(ymin*2)
                    ymax = round(ymax*2)
                    np_im = cv2.rectangle(np_im, (xmin, ymin), (xmax, ymax), (255, 255, 0))
                    np_im = cv2.putText(np_im, str(round(conf, 3)), ((xmin + xmax) // 2, (ymin + ymax) // 2),
                                        cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1)

                    iou = bbox_iou_x1y1x2y2([gt_xmin, gt_ymin, gt_xmax, gt_ymax], [xmin, ymin, xmax, ymax])
                    np_im = cv2.putText(np_im, str(round(iou, 3)), ((xmin + xmax) // 2, (ymin + ymax) // 2 + 20),
                                        cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 0, 255), 1)

                # cv2.imshow('', np_im)
                # cv2.waitKey()

                os.makedirs('image_out', exist_ok=True)
                cv2.imwrite('image_out/' + str(image_counter) + '.jpg', np_im)
                image_counter += 1

        rec, prec, ap = det_eval(predict_list, target_dict, 0, 0.75)
        net.train()
        return ap
示例#5
0
def train(arg: ARG,
          train_loader,
          valid_loader,
          net,
          loss_func,
          optimizer,
          lr_decay,
          epoch,
          vis: VIS = None):
    bbox_format = list()
    bbox_format.append(
        Bbox_Format(arg.model.net.im_size, arg.model.net.feature_size[0],
                    arg.model.flt_anchor, arg.model.net.num_class,
                    arg.model.mask_iou_threshold))
    bbox_format.append(
        Bbox_Format(arg.model.net.im_size, arg.model.net.feature_size[1],
                    arg.model.flt_anchor, arg.model.net.num_class,
                    arg.model.mask_iou_threshold))
    net.train()
    for batch_idx, batch_data_dict in enumerate(train_loader):
        vis.iteration_counter = batch_idx
        print('Epoch:{}, step/all: {}/{}'.format(epoch, batch_idx,
                                                 len(train_loader)))

        batch_image = batch_data_dict['image']
        batch_label = batch_data_dict['label']
        batch_image_path = batch_data_dict['image_path']
        batch_image, batch_label = list(
            map(lambda x: x.to(arg.train.device), (batch_image, batch_label)))

        lr = lr_decay.get_lr(global_step=vis.step)
        optimizer.param_groups[0]['lr'] = lr
        optimizer.zero_grad()
        net_out = net.forward(batch_image)
        predict_list = list()
        target_list = list()
        losses_list = list()
        whole_loss = 0
        for model_out_idx, feature in enumerate(net_out):
            batch_predict = model_out_to_model_predict(
                feature, num_anchors=arg.model.net.num_anchor)
            predict_list.append(batch_predict)

            batch_target = bbox_format[model_out_idx].to_model(batch_label)
            target_list.append(batch_target)

            batch_predict = list(
                filter(lambda x: x.shape != torch.Size([0]), batch_predict))
            batch_target = list(
                filter(lambda x: x.shape != torch.Size([0]), batch_target))
            layer_loss = loss_func.forward(batch_predict, batch_target)
            losses_list.append(layer_loss)
            whole_loss += torch.mean(layer_loss[0]) / len(net_out)
        whole_loss.backward()
        optimizer.step()

        if batch_idx % arg.train.log_iteration_interval == 0:
            vis.line('log10_lr', np.log10(lr))

            predict_bbox_list = list()
            confidence_list = list()
            for model_out_idx, feature in enumerate(net_out):
                batch_predict = model_out_to_model_predict(
                    feature, num_anchors=arg.model.net.num_anchor)
                batch_predict_bbox, batch_confidence = bbox_format[
                    model_out_idx].to_bbox(*batch_predict)

                predict_bbox_list.append(batch_predict_bbox[0])
                confidence_list.append(batch_confidence[0])

            predict_bboxes = torch.cat(predict_bbox_list, 0)
            predict_bboxes = cxcywh_to_x1y1x2y2(predict_bboxes)
            confidences = torch.cat(confidence_list, 0)

            bboxes, confidences = confidence_filter(
                predict_bboxes, confidences,
                arg.model.out_confidence_filter_threshold)

            np_im = torch_im_to_cv2_im(batch_image[0]).copy()
            for box in bboxes:
                x1, y1, x2, y2 = list(map(lambda x: int(x), box))
                np_im = cv2.rectangle(np_im, (x1, y1), (x2, y2), (255, 255, 0))
            vis.image('_0_predict_before_nms', np_im)

            bboxes, confidences = none_max_suppression(
                bboxes, confidences, arg.model.nms_iou_threshold)

            np_im = torch_im_to_cv2_im(batch_image[0]).copy()
            for box, conf in zip(bboxes, confidences):
                x1, y1, x2, y2 = list(map(lambda x: int(x), box.tolist()))
                np_im = cv2.rectangle(np_im, (x1, y1), (x2, y2), (0, 255, 255))
                np_im = cv2.putText(np_im, str(round(conf.item(), 3)),
                                    ((x1 + x2) // 2, (y1 + y2) // 2),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0),
                                    1)
            vis.image('_0_predict_after_nms', np_im)

            image_show = torch_im_to_cv2_im(batch_image[0]).copy()
            for hand_idx in range(batch_label[0].shape[0]):
                cx, cy, w, h = (
                    batch_label[0][hand_idx].data.cpu().numpy()[1:])
                x1, y1, x2, y2 = cxcywh_to_x1y1x2y2(cx, cy, w, h)
                x1, y1, x2, y2 = list(
                    map(lambda x: int(x * arg.model.net.im_size[0]),
                        (x1, y1, x2, y2)))
                image_show = cv2.rectangle(image_show, (x1, y1), (x2, y2),
                                           (0, 255, 0))
            vis.image('_0_target', image_show)

            vis.line('_0_whole_loss', y=whole_loss.item())

            for layer_idx, (losses, batch_predict, batch_target) in enumerate(
                    zip(losses_list, predict_list, target_list)):

                mask, negative_mask, tar_dx, tar_dy, tar_w, tar_h, tar_confidence, tar_class = batch_target
                pre_dx, pre_dy, pre_w, pre_h, pre_confidence, pre_class = batch_predict

                batch_show_idx = 0
                for anchor_idx in range(arg.model.net.num_anchor):
                    vis.image(
                        'layer' + str(layer_idx) + '_anchor' +
                        str(anchor_idx) + '_confidence/target',
                        tar_confidence[batch_show_idx, anchor_idx])
                    vis.image(
                        'layer' + str(layer_idx) + '_anchor' +
                        str(anchor_idx) + '_confidence/predict',
                        pre_confidence[batch_show_idx, anchor_idx])
                    # vis.image('layer'+str(layer_idx)+'_anchor'+str(anchor_idx)+'_class/target', tar_class[batch_show_idx, anchor_idx, :, :, 0])
                    # vis.image('layer'+str(layer_idx)+'_anchor'+str(anchor_idx)+'_class/predict', pre_class[batch_show_idx, anchor_idx])

                loss, loss_dx, loss_dy, loss_w, loss_h, loss_confidence, loss_class = losses
                vis.line(str(layer_idx) + '/loss', y=sum(loss.tolist()))
                vis.line(str(layer_idx) + '/loss_dx', y=sum(loss_dx.tolist()))
                vis.line(str(layer_idx) + '/loss_dy', y=sum(loss_dy.tolist()))
                vis.line(str(layer_idx) + '/loss_w', y=sum(loss_w.tolist()))
                vis.line(str(layer_idx) + '/loss_h', y=sum(loss_h.tolist()))
                vis.line(str(layer_idx) + '/loss_confidence',
                         y=sum(loss_confidence.tolist()))
                # vis.line(str(layer_idx)+'/loss_class', y=sum(loss_class.tolist()))

        if batch_idx % arg.train.valid_iteration_interval == 1:
            valid(arg, valid_loader, net, loss_func, epoch, vis)
            net.train()
示例#6
0
def train(arg: ARG,
          train_loader,
          net,
          loss_func,
          optimizer,
          epoch,
          vis: VIS = None):
    bbox_format = list()
    bbox_format.append(
        Bbox_Format(arg.model.net.im_size, arg.model.net.feature_size[0],
                    arg.model.anchor, arg.model.net.num_class,
                    arg.model.mask_iou_threshold))
    bbox_format.append(
        Bbox_Format(arg.model.net.im_size, arg.model.net.feature_size[1],
                    arg.model.anchor, arg.model.net.num_class,
                    arg.model.mask_iou_threshold,
                    arg.model.filter_iou_threshold))
    net.train()
    for batch_idx, batch_data_dict in enumerate(train_loader):
        vis.iteration_counter = batch_idx
        print('Epoch:{}, step/all: {}/{}'.format(epoch, batch_idx,
                                                 len(train_loader)))

        batch_image = batch_data_dict['image']
        batch_label = batch_data_dict['label']
        batch_image_path = batch_data_dict['image_path']

        batch_image, batch_label = list(
            map(lambda x: x.to(arg.train.device), (batch_image, batch_label)))

        optimizer.zero_grad()
        net_out = net.forward(batch_image)
        predict_list = list()
        target_list = list()
        losses_list = list()
        whole_loss = 0
        for model_out_idx, feature in enumerate(net_out):
            batch_predict = model_out_to_model_predict(feature,
                                                       num_anchors=len(
                                                           arg.model.anchor))
            predict_list.append(batch_predict)

            batch_target = bbox_format[model_out_idx].to_model(batch_label)
            target_list.append(batch_target)

            layer_loss = loss_func.forward(batch_predict, batch_target)
            losses_list.append(layer_loss)
            whole_loss += torch.mean(layer_loss[0]) / len(net_out)
        whole_loss.backward()
        optimizer.step()

        if batch_idx % arg.train.log_iteration_interval == 0:

            # # # # # TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TES
            # batch_predict_bbox, batch_confidence = bbox_format[model_out_idx].to_bbox(*batch_predict)
            #
            # image_show = torch_im_to_cv2_im(batch_image[0]).copy()
            # for pre_idx in range(batch_predict_bbox.shape[1]):
            #     cx, cy, w, h = (batch_predict_bbox[0][pre_idx].data.cpu().numpy())
            #     if np.sum((cx, cy, w, h)) < 0.000001:
            #         continue
            #     x1, y1, x2, y2 = cxcywh_to_x1y1x2y2(cx, cy, w, h)
            #     x1, y1, x2, y2 = list(map(lambda x: int(x), (x1, y1, x2, y2)))
            #     image_pre_show = cv2.rectangle(image_show, (x1, y1), (x2, y2), (255, 255, 0))
            #     vis.image('_0_predict'+str(model_out_idx), image_pre_show)
            # # cv2.imshow('_0_predict'+str(model_out_idx), image_pre_show)
            # # cv2.waitKey()
            # # # # # TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST

            vis.line('_0_whole_loss', y=whole_loss.item())

            image_show = torch_im_to_cv2_im(batch_image[0]).copy()
            for hand_idx in range(batch_label[0].shape[0]):
                cx, cy, w, h = (
                    batch_label[0][hand_idx].data.cpu().numpy()[1:])
                x1, y1, x2, y2 = cxcywh_to_x1y1x2y2(cx, cy, w, h)
                x1, y1, x2, y2 = list(
                    map(lambda x: int(x * 160), (x1, y1, x2, y2)))
                image_show = cv2.rectangle(image_show, (x1, y1), (x2, y2),
                                           (0, 255, 0))
            vis.image('_0_target', image_show)
            # cv2.imshow('image_show', image_show)
            # cv2.waitKey()

            for layer_idx, (losses, batch_predict, batch_target) in enumerate(
                    zip(losses_list, predict_list, target_list)):

                mask, negative_mask, tar_dx, tar_dy, tar_w, tar_h, tar_confidence, tar_class = batch_target
                pre_dx, pre_dy, pre_w, pre_h, pre_confidence, pre_class = batch_predict

                batch_show_idx = 0
                for anchor_idx in range(arg.model.net.num_anchor):
                    vis.image(
                        'layer' + str(layer_idx) + '_anchor' +
                        str(anchor_idx) + '_confidence/target',
                        tar_confidence[batch_show_idx, anchor_idx])
                    vis.image(
                        'layer' + str(layer_idx) + '_anchor' +
                        str(anchor_idx) + '_confidence/predict',
                        pre_confidence[batch_show_idx, anchor_idx])
                    # vis.image('layer'+str(layer_idx)+'_anchor'+str(anchor_idx)+'_class/target', tar_class[batch_show_idx, anchor_idx, :, :, 0])
                    # vis.image('layer'+str(layer_idx)+'_anchor'+str(anchor_idx)+'_class/predict', pre_class[batch_show_idx, anchor_idx])

                loss, loss_dx, loss_dy, loss_w, loss_h, loss_confidence, loss_class = losses
                vis.line(str(layer_idx) + '/loss', y=sum(loss.tolist()))
                vis.line(str(layer_idx) + '/loss_dx', y=sum(loss_dx.tolist()))
                vis.line(str(layer_idx) + '/loss_dy', y=sum(loss_dy.tolist()))
                vis.line(str(layer_idx) + '/loss_w', y=sum(loss_w.tolist()))
                vis.line(str(layer_idx) + '/loss_h', y=sum(loss_h.tolist()))
                vis.line(str(layer_idx) + '/loss_confidence',
                         y=sum(loss_confidence.tolist()))
                vis.line(str(layer_idx) + '/loss_class',
                         y=sum(loss_class.tolist()))