示例#1
0
def train(modelName, dim, maxIter):
    """训练"""
    # logger.info("{}-GAMain-train-{}".format('*'*25, '*'*25))
    problem = MyProblem(modelName)
    NIND = dim  # 种群规模

    Encoding = 'RI'  # 实整数编码
    Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,
                      problem.borders)

    population = ea.Population(Encoding, Field, NIND)
    myAlgorithm = ea.soea_SEGA_templet(problem, population)
    myAlgorithm.MAXGEN = maxIter  # 最大进化代数
    myAlgorithm.drawing = 1
    [population, obj_trace, var_trace] = myAlgorithm.run()
    population.save(printHandler=logger.info)

    # 输出结果
    best_gen = np.argmin(problem.maxormins * obj_trace[:, 1])  # 记录最优种群个体是在哪一代
    best_ObjV = obj_trace[best_gen, 1]
    logger.info('最优的目标函数值为:%s' % (best_ObjV))
    logger.info('最优的控制变量值为:')
    for i in range(var_trace.shape[1]):
        logger.info(var_trace[best_gen, i])
    logger.info('有效进化代数:%s' % (obj_trace.shape[0]))
    logger.info('最优的一代是第 %s 代' % (best_gen + 1))
    logger.info('评价次数:%s' % (myAlgorithm.evalsNum))
    logger.info('时间已过 %s 秒' % (myAlgorithm.passTime))
示例#2
0
def main(aim, n, Dim, phase):
    start = time.perf_counter()
    """===============================实例化问题对象==========================="""
    PoolType = 'Thread'
    problem = MyProblem_multiprocess(aim, n, Dim, phase, PoolType)  # 生成问题对象
    """=================================种群设置==============================="""
    Encoding = 'RI'  # 编码方式
    NIND = 300  # 种群规模
    Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,
                      problem.borders)  # 创建区域描述器
    population = ea.Population(Encoding, Field,
                               NIND)  # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)
    """===============================算法参数设置============================="""
    myAlgorithm = ea.soea_SEGA_templet(problem, population)  # 实例化一个算法模板对象
    # myAlgorithm.mutOper.Pm = 1 # 修改变异算子的变异概率(原模板中breeder GA变异算子的Pm定义为1 / Dim)
    # myAlgorithm.recOper.XOVR = 0.9 # 修改交叉算子的交叉概率
    myAlgorithm.MAXGEN = 15  # 最大进化代数
    myAlgorithm.trappedValue = 1e-6  # “进化停滞”判断阈值
    myAlgorithm.maxTrappedCount = 10  # 进化停滞计数器最大上限值,如果连续maxTrappedCount代被判定进化陷入停滞,则终止进化
    myAlgorithm.drawing = 2  # 设置绘图方式(0:不绘图;1:绘制结果图;2:绘制目标空间过程动画;3:绘制决策空间过程动画)
    """==========================调用算法模板进行种群进化======================="""
    [population, obj_trace, var_trace] = myAlgorithm.run()  # 执行算法模板
    population.save()  # 把最后一代种群的信息保存到文件中
    # 输出结果
    best_gen = np.argmin(problem.maxormins * obj_trace[:, 1])  # 记录最优种群个体是在哪一代
    best_ObjV = obj_trace[best_gen, 1]
    print('最优的目标函数值为:%.8smm' % (best_ObjV))
    if phase == None:
        phase = [0] + [i * 10 for i in var_trace[best_gen, :]]  # 第一次算出的所有相位值
        res = aim.bias_n_li_fast(phase)
        find_index = np.where(max(res[n + 1:, 0]) == res[
            n + 1:,
            0])[0][0] + 1  # 第一次最大偏心值的索引位置(此处res内的n+1和最后面的+1表示:不考虑第一级,整体向后偏移一位)
    else:
        phase = phase + [i * 10
                         for i in var_trace[best_gen, :]]  # 所有相位值(后续几级相位值有更新)
        res = aim.bias_n_li_fast(phase)
        find_index = np.where(max(res[n:, 0]) == res[n:,
                                                     0])[0][0]  # 每次的最大偏心值的索引位置
    print('所在位置及相位偏斜角为:第%s级零件末端; %.8s°' %
          (find_index + 1 + n, res[find_index + n, 1]))
    if n == 0:
        for i in range(len(phase)):
            print('第%s级相位、偏心值及相位偏斜角为:%s°; %.8smm; %.8s°' %
                  (i + 1, phase[i], res[i, 0], res[i, 1]))
    else:
        for i in range(var_trace.shape[1]):
            print('第%s级相位、偏心值及相位偏斜角为:%s°; %.8smm; %.8s°' %
                  (i + (n + 1), phase[i + n], res[i + n, 0], res[i + n, 1]))
    print('有效进化代数:%s' % (obj_trace.shape[0]))
    print('最优的一代是第 %s 代' % (best_gen + 1))
    print('评价次数:%s' % (myAlgorithm.evalsNum))
    # print('时间已过 %s 分 %.8s 秒' % (int(myAlgorithm.passTime // 60), myAlgorithm.passTime % 60))
    n = n + int(
        (find_index + 1))  # 计算累计固定好的级数(此处find_index类型为int64,改为int类型防止后面报错!)
    end = time.perf_counter()
    print(f'时间已过 {int((end - start) // 60)} 分 {(end - start) % 60:.8f} 秒')
    return myAlgorithm, obj_trace, var_trace, best_gen, best_ObjV, phase, res, n
def opti_function(nind, maxgen, X_train, Y_train, n_fidelity, fullname_temp,
                  feature, wlcb, fre_E, d_x, bounds):
    gol.set_map("feature", feature)
    gol.set_map("wlcb", wlcb)
    gol.set_map("fre_E", fre_E)
    gol.set_map("d_x", d_x)
    gol.set_map("bounds", bounds)
    # from function_nonlinmodel import variable_model
    variable_model(X_train, Y_train, n_fidelity, fullname_temp)
    # 实例化问题对象
    problem = MyProblem()  # 生成问题对象
    # 种群设置
    Encoding = 'BG'  # 编码方式
    NIND = nind  # 种群规模
    Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,
                      problem.borders)  # 创建区域描述器
    population = ea.Population(Encoding, Field,
                               NIND)  # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)
    # 算法参数设置
    myAlgorithm = ea.soea_SEGA_templet(problem, population)  # 实例化一个算法模板对象
    myAlgorithm.MAXGEN = maxgen  # 最大进化代数
    myAlgorithm.drawing = 0  # 不画图
    # 调用算法模板进行种群进化
    [population, obj_trace, var_trace] = myAlgorithm.run()  # 执行算法模板
    population.save()  # 把最后一代种群的信息保存到文件中
    # 输出结果
    best_gen = np.argmin(problem.maxormins * obj_trace[:, 1])  # 记录最优种群个体是在哪一代
    best_ObjV = obj_trace[best_gen, 1]
    '''# 遗传算法画图
    try:
        plt.close("Ga 1")
        plt.ion()
        plt.figure("Ga 1")
        plt.plot(obj_trace[:, 0], lw=3, label='Average objective function value')
        plt.plot(obj_trace[:, 1], lw=3, label='Optimal objective function value')
        # plt.grid(True)
        plt.legend(loc=0)  # 图例位置自动
        plt.xlabel('Number of Generation')
        plt.ylabel('Value')
        plt.title('objective function value')
        plt.draw()
    except:
        plt.ion()
        plt.figure("Ga 1")
        plt.plot(obj_trace[:, 0], lw=3, label='Average objective function value')
        plt.plot(obj_trace[:, 1], lw=3, label='Optimal objective function value')
        # plt.grid(True)
        plt.legend(loc=0)  # 图例位置自动
        # plt.axis('tight')
        plt.xlabel('Number of Generation')
        plt.ylabel('Value')
        plt.title('objective function value')
        plt.draw()'''
    return var_trace[best_gen, :].reshape(1, -1), best_ObjV
示例#4
0
def geatpy_optimizer(func, Dim, lb, ub, n_group, n_iter, pco, pm, seed):
    """ 定义优化问题

    """

    # 随机数种子设置
    np.random.seed(seed=seed)

    """===============================实例化问题对象==========================="""
    problem = MyProblem(func, Dim, lb, ub, n_group)  # 生成问题对象
    """=================================种群设置=============================="""
    Encoding = 'BG'  # 编码方式
    NIND = n_group  # 种群规模
    Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges, problem.borders)  # 创建区域描述器
    population = ea.Population(Encoding, Field, NIND)  # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)
    """===============================算法参数设置============================="""
    myAlgorithm = ea.soea_SEGA_templet(problem, population)  # 实例化一个算法模板对象
    myAlgorithm.MAXGEN = n_iter  # 最大进化代数
    myAlgorithm.recOper.XOVR = pco  # 设置交叉概率
    myAlgorithm.mutOper.Pm = pm  # 设置变异概率
    myAlgorithm.logTras = 1  # 设置每隔多少代记录日志,若设置成0则表示不记录日志
    myAlgorithm.verbose = True  # 设置是否打印输出日志信息
    myAlgorithm.drawing = 0  # 设置绘图方式(0:不绘图;1:绘制结果图;2:绘制目标空间过程动画;3:绘制决策空间过程动画)
    """==========================调用算法模板进行种群进化========================"""
    [BestIndi, population] = myAlgorithm.run()  # 执行算法模板,得到最优个体以及最后一代种群
    # 保留前5个最优的解
    # top_five_index = np.argsort(population.ObjV * problem.maxormins, axis=0)[:5]
    # top_five_pop = population[top_five_index]
    BestIndi.save()  # 把最优个体的信息保存到文件中
    """=================================输出结果=============================="""
    print('评价次数:%s' % myAlgorithm.evalsNum)
    print('时间已过 %s 秒' % myAlgorithm.passTime)
    if BestIndi.sizes != 0:
        print('最优的目标函数值为:%s' % BestIndi.ObjV[0][0])
        print('最优的控制变量值为:')
        for i in range(BestIndi.Phen.shape[1]):
            print(BestIndi.Phen[0, i])
    else:
        print('没找到可行解。')

    return myAlgorithm, population
示例#5
0
文件: main.py 项目: bevarb/XIAO-SAI
def geat_method(dist, NIND=500, Encoding='P', MAXGEN=300, XOVR=0.2, Pm=0.5):
    '''NIND:种群规模
    Encoding:编码方式
    MAXGEN:最大进化代数
    XOVR:交叉算子
    Pm:变异算子'''
    problem = MyProblem(dist)  # 生成问题对象
    """=================================种群设置================================="""
    Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,
                      problem.borders)  # 创建区域描述器
    population = ea.Population(Encoding, Field,
                               NIND)  # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)
    """===============================算法参数设置==============================="""
    myAlgorithm = ea.soea_SEGA_templet(problem, population)  # 实例化一个算法模板对象
    myAlgorithm.MAXGEN = MAXGEN  # 最大进化代数
    myAlgorithm.recOper = ea.Xovox(XOVR=XOVR)  # 设置交叉算子
    myAlgorithm.mutOper = ea.Mutinv(Pm=Pm)  # 设置变异算子
    myAlgorithm.drawing = 1  # 设置绘图方式(0:不绘图;1:绘制结果图;2:绘制过程动画)
    """==========================调用算法模板进行种群进化=========================="""
    [population, obj_trace,
     var_trace] = myAlgorithm.run()  # 执行算法模板,得到最后一代种群以及进化记录器
    population.save()  # 把最后一代种群的信息保存到文件中
    # 输出结果
    best_gen = np.argmin(obj_trace[:, 1])  # 记录最优种群是在哪一代
    best_ObjV = np.min(obj_trace[:, 1])
    print('最短路程为:%s' % (best_ObjV))
    print('最佳路线为:')
    best_journey, edges = problem.decode(var_trace[best_gen, :])
    print(best_journey)
    for i in range(len(best_journey)):
        print(int(best_journey[i]), end=' ')
    print()
    print('有效进化代数:%s' % (obj_trace.shape[0]))
    print('最优的一代是第 %s 代' % (best_gen + 1))
    print('评价次数:%s' % (myAlgorithm.evalsNum))
    print('时间已过 %s 秒' % (myAlgorithm.passTime))
    info = ["Geat Method", str(MAXGEN) + " times", str(int(best_ObjV)) + " Km"]
    return best_journey, info, myAlgorithm.passTime
示例#6
0
import numpy as np
"""==================================实例化问题对象================================"""
problemName = 'Rastrigrin'  # 问题名称
fileName = problemName  # 这里因为目标函数写在与之同名的文件里,所以文件名也是问题名称
MyProblem = getattr(__import__(fileName), problemName)  # 获得自定义问题类
problem = MyProblem(30)  # 生成问题对象
"""==================================种群设置================================"""
Encoding = 'RI'  # 编码方式
NIND = 100  # 种群规模
precisions = [50] * problem.Dim  # 编码精度(适用于二进制/格雷编码)
Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges, problem.borders,
                  precisions)  # 创建区域描述器
population = ea.Population(Encoding, Field,
                           NIND)  # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)
"""==================================算法参数设置================================"""
myAlgorithm = ea.soea_SEGA_templet(problem, population)  # 实例化一个算法模板对象
myAlgorithm.MAXGEN = 1000  # 最大进化代数
myAlgorithm.drawing = 1  # 设置绘图方式(0:不绘图;1:绘制结果图;2:绘制过程动画)
"""=======================调用算法模板进行种群进化=============================="""
[population, obj_trace,
 var_trace] = myAlgorithm.run()  # 执行算法模板,得到最后一代种群以及进化记录器
population.save()  # 把最后一代种群的信息保存到文件中
# 输出结果
best_gen = np.argmin(obj_trace[:, 1])  # 记录最优种群是在哪一代
best_ObjV = np.min(obj_trace[:, 1])
print('最优的目标函数值为:%s' % (best_ObjV))
print('最优的控制变量值为:')
for i in range(var_trace.shape[1]):
    print(var_trace[best_gen, i])
print('有效进化代数:%s' % (obj_trace.shape[0]))
print('最优的一代是第 %s 代' % (best_gen + 1))
示例#7
0
            x1 = Vars[i, 0]
            x2 = Vars[i, 1]
            CV.append(np.array([(x1 - 0.5)**2 - 0.25, (x2 - 1)**2 - 1]))
        return np.vstack(f), np.vstack(CV)  # 返回目标函数值矩阵和违反约束程度矩阵

    problem = ea.Problem(
        name='soea quick start demo',
        M=1,  # 目标维数
        maxormins=[1],  # 目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标
        Dim=5,  # 决策变量维数
        varTypes=[0, 0, 1, 1, 1],  # 决策变量的类型列表,0:实数;1:整数
        lb=[-1, 1, 2, 1, 0],  # 决策变量下界
        ub=[1, 4, 5, 2, 1],  # 决策变量上界
        evalVars=evalVars)
    # 构建算法
    algorithm = ea.soea_SEGA_templet(
        problem,
        ea.Population(Encoding='RI', NIND=20),
        MAXGEN=50,  # 最大进化代数。
        logTras=1,  # 表示每隔多少代记录一次日志信息,0表示不记录。
        trappedValue=1e-6,  # 单目标优化陷入停滞的判断阈值。
        maxTrappedCount=10)  # 进化停滞计数器最大上限值。
    # 求解
    res = ea.optimize(algorithm,
                      verbose=True,
                      drawing=1,
                      outputMsg=True,
                      drawLog=False,
                      saveFlag=True)
    print(res)
示例#8
0
    def optimize(datasetX, datasetY, featureNamesAfterCombination,
                 featureOptimizationParams, datasetParams,
                 forecastModelParams):
        featureNamesAfterOptimization = []
        featureOptimizationProcess = None
        isPerformOptimization = featureOptimizationParams[
            "isPerformOptimization"]
        if isPerformOptimization:
            dim = len(featureNamesAfterCombination)
            problem = FeatureOptimizationProblem(datasetX, datasetY,
                                                 featureNamesAfterCombination,
                                                 datasetParams,
                                                 forecastModelParams)
            encoding = 'RI'
            popNum = 10
            field = ea.crtfld(encoding, problem.varTypes, problem.ranges,
                              problem.borders)
            pop = ea.Population(encoding, field, popNum)

            if dim < 7:
                # 维度不高时采用穷举
                Phen = []
                for i in range(1, pow(2, dim)):
                    numStr = MathNormalUtils.toBinaryWithFixedLength(i, dim)
                    numArray = list(map(int, numStr))
                    Phen.append(numArray)
                # 受维数灾影响 随机优化5个特征组合
                resultlist = random.sample(range(len(Phen)), 3)
                Phen = np.array(Phen)
                # Phen = Phen[resultlist, :]
                pop.Phen = Phen
                problem.aimFunc(pop)
                objTrace, varTrace = pop.ObjV, pop.Phen
                objTrace = NumpyUtils.hStackByCutHead(objTrace, objTrace)
            else:

                algorithm = ea.soea_SEGA_templet(problem, pop)
                # 算法最大进化代数
                algorithm.MAXGEN = 10
                # 0表示不绘图;1表示绘图;2表示动态绘图
                algorithm.drawing = 1

                [pop, objTrace, varTrace] = algorithm.run()
            featureOptimizationProcess = {
                "objTrace": objTrace,
                "varTrace": varTrace
            }
            bestGen = np.argmin(problem.maxormins * objTrace[:, 1])
            bestVar = varTrace[bestGen, :]
            bestVar = [int(x) for x in bestVar]
            bestVar = np.array(bestVar)

            featureCombinationParams = {
                "isPerformCombination": True,
                "featureFlags": bestVar
            }
            featureCombination = FeatureCombination(
                datasetX, datasetY, featureNamesAfterCombination,
                featureCombinationParams)
            datasetAfterOptimizationX, datasetAfterOptimizationY, featureNamesAfterOptimization = featureCombination.getDatasetAfterCombination(
            )
        else:
            datasetAfterOptimizationX = datasetX
            datasetAfterOptimizationY = datasetY
            featureNamesAfterOptimization = featureNamesAfterCombination

            dataset = Dataset(datasetAfterOptimizationX,
                              datasetAfterOptimizationY, datasetParams)
            forecastTemplate = ForecastTemplate(dataset, forecastModelParams)
            loss = forecastTemplate.getObjective()
        if (datasetAfterOptimizationX is None) or (datasetAfterOptimizationY is
                                                   None):
            raise Exception("特征优化中全部特征未被选取,请检查参数!")
        return datasetAfterOptimizationX, datasetAfterOptimizationY, featureNamesAfterOptimization, featureOptimizationProcess
示例#9
0
文件: Main.py 项目: TSLNIHAOGIT/gene
def each_brake(each_wait_list, L, W, brake_num, wait_list_num):
    wait_list = each_wait_list
    """===============================实例化问题对象==========================="""
    problem = MyProblem(wait_list, L, W)  # 生成问题对象
    """=================================种群设置==============================="""
    Encoding = 'P'  # 编码方式
    NIND = 6000  #4000,6000 种群规模
    # ranges还是原来的,Field会在最后一行加上1
    Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,
                      problem.borders)  # 创建区域描述器
    population = ea.Population(Encoding, Field,
                               NIND)  # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)
    """===============================算法参数设置============================="""
    myAlgorithm = ea.soea_SEGA_templet(problem,
                                       population)  # 实例化一个算法模板对象,单目标模板
    # myAlgorithm=ea.moea_NSGA2_templet(problem, population)  #多目模板
    myAlgorithm.MAXGEN = 3  # 13 # 最大进化代数
    # myAlgorithm.recOper = ea.Xovox(XOVR=0.8)  # 设置交叉算子 __init__(self, XOVR=0.7, Half=False)
    # myAlgorithm.mutOper = ea.Mutinv(Pm=0.2)  # 设置变异算子
    myAlgorithm.logTras = 1  # 设置每多少代记录日志,若设置成0则表示不记录日志
    myAlgorithm.verbose = False  # 设置是否打印输出日志信息
    myAlgorithm.drawing = 0  # 设置绘图方式(0:不绘图;1:绘制结果图;2:绘制目标空间过程动画;3:绘制决策空间过程动画)
    """==========================调用算法模板进行种群进化======================="""
    [population, obj_trace, var_trace] = myAlgorithm.run()  # 执行算法模板
    # population.save()  # 把最后一代种群的信息保存到文件中

    # 输出结果
    best_gen = np.argmin(problem.maxormins * obj_trace[:, 1])  # 记录最优种群个体是在哪一代
    best_ObjV = obj_trace[best_gen, 1]
    # print('最优的目标函数值为:%s' % (best_ObjV))
    # print('最优的控制变量值为:')

    for i in range(var_trace.shape[1]):  # (MAXGEN,Dim),进化的总代数和决策变量的维度
        print(var_trace[best_gen, i])

    best_sort_sequence = [int(each)
                          for each in var_trace[best_gen]]  # (4000, 12)
    #best_brake_seq={i:wait_list[i] for i in best_sort_sequence}
    best_brake_seq = wait_list[best_sort_sequence]
    #闸次原始顺序
    brake_boat = quick_sort_brake(best_brake_seq, L, W)

    # #将快速入闸的顺序,对应到最优选择的顺序
    # brake_boat={best_sort_sequence[k]:v for k,v in brake_boat.items()}
    #
    # #将最优选择的顺序,对应到最原始的队列中的序号
    # brake_boat={wait_list_num[k]:v for k,v in brake_boat.items()}

    # N_e = len(brake_boat)
    # plot_example(X, Y, li_e, wi_e, N_e,brake_num=brake_num)
    best_use_rate = plot_save(brake_boat, brake_num)
    print('plot finished')

    # print('有效进化代数:%s' % (obj_trace.shape[0]))
    # print('最优的一代是第 %s 代' % (best_gen + 1))
    # print('评价次数:%s' % (myAlgorithm.evalsNum))
    # print('时间已过 %s 秒' % (myAlgorithm.passTime))
    return {
        'brake_boat': brake_boat,
        'best_sort_sequence': best_sort_sequence,
        'best_use_rate': best_use_rate
    }
示例#10
0
文件: Main.py 项目: TSLNIHAOGIT/gene
def each_brake(each_wait_list,L,W):
    def get_sqare_rate(in_brake_sort, L,W):
        brake_boat=quick_sort_brake(in_brake_sort, L, W)
        s=0
        for k,v in brake_boat.items():
            s=s+v[1][0]*v[1][1]
    
        sqare_rate=s/(L*W)            
        return sqare_rate,brake_boat
    
    
    
    wait_list=each_wait_list
    """===============================实例化问题对象==========================="""
    problem = MyProblem(wait_list, L, W)  # 生成问题对象
    """=================================种群设置==============================="""
    Encoding = 'P'  # 编码方式
    NIND = 6000  # 种群规模
    # ranges还是原来的,Field会在最后一行加上1
    Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges, problem.borders)  # 创建区域描述器
    population = ea.Population(Encoding, Field, NIND)  # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)
    """===============================算法参数设置============================="""
    myAlgorithm = ea.soea_SEGA_templet(problem, population)  # 实例化一个算法模板对象,单目标模板
    # myAlgorithm=ea.moea_NSGA2_templet(problem, population)  #多目模板
    myAlgorithm.MAXGEN = 15  # 13 # 最大进化代数
    # myAlgorithm.recOper = ea.Xovox(XOVR=0.8)  # 设置交叉算子 __init__(self, XOVR=0.7, Half=False)
    # myAlgorithm.mutOper = ea.Mutinv(Pm=0.2)  # 设置变异算子
    myAlgorithm.logTras = 1  # 设置每多少代记录日志,若设置成0则表示不记录日志
    myAlgorithm.verbose = True  # 设置是否打印输出日志信息
    myAlgorithm.drawing = 1  # 设置绘图方式(0:不绘图;1:绘制结果图;2:绘制目标空间过程动画;3:绘制决策空间过程动画)

    """==========================调用算法模板进行种群进化======================="""
    [population, obj_trace, var_trace] = myAlgorithm.run()  # 执行算法模板
    population.save()  # 把最后一代种群的信息保存到文件中

    # 输出结果
    best_gen = np.argmin(problem.maxormins * obj_trace[:, 1])  # 记录最优种群个体是在哪一代
    best_ObjV = obj_trace[best_gen, 1]
    print('最优的目标函数值为:%s' % (best_ObjV))
    print('最优的控制变量值为:')

    for i in range(var_trace.shape[1]):  # (MAXGEN,Dim),进化的总代数和决策变量的维度
        print(var_trace[best_gen, i])

    best_sort_sequence = [int(each) for each in var_trace[best_gen]]  # (4000, 12)
    #best_brake_seq={i:wait_list[i] for i in best_sort_sequence}



    # best_brake_seq = wait_list[best_sort_sequence]
    # all_brake_boat = {}
    # in_brake_sort = best_brake_seq
    # sqare_rate,brake_boat=get_sqare_rate(in_brake_sort, L,W)
    # brake_num=list(brake_boat.keys())
    # brake_boat={best_sort_sequence[k]:v for k,v in brake_boat.items()}
    # all_brake_boat[0]= {'brake_boat':brake_boat,'best_use_rate':sqare_rate}
    # print('一闸最优解:组合={} \n 面积利用率={}'.format(brake_boat,sqare_rate))
    #
    # each2=np.delete(best_sort_sequence,brake_num,axis=0)
    # in_brake_sort2=np.delete(in_brake_sort,brake_num,axis=0)
    # if len(in_brake_sort2)>0:
    #     sqare_rate2,brake_boat2=get_sqare_rate(in_brake_sort2, L,W)
    #     brake_num2=list(brake_boat2.keys())
    #     #sqare_rate=sqare_rate+sqare_rate2
    #     brake_boat2={each2[k]:v for k,v in brake_boat2.items()}
    #     all_brake_boat[1] = {'brake_boat':brake_boat2,'best_use_rate':sqare_rate2}
    #     print('二闸最优解:组合={} \n 面积利用率={}'.format(brake_boat2,sqare_rate2))
    #
    #     each3=np.delete(each2,brake_num2,axis=0)
    #     in_brake_sort3=np.delete(in_brake_sort2,brake_num2,axis=0)
    #     if len(in_brake_sort3)>0:
    #         sqare_rate3,brake_boat3=get_sqare_rate(in_brake_sort3, L,W)
    #         brake_num3=list(brake_boat3.keys())
    #
    #         brake_boat3={each3[k]:v for k,v in brake_boat3.items()}
    #         all_brake_boat[2] = {'brake_boat':brake_boat3,'best_use_rate':sqare_rate3}#brake_boat3
    #         print('三闸最优解:组合={} \n 面积利用率={}'.format(brake_boat3,sqare_rate3))
    #         #sqare_rate=sqare_rate+sqare_rate3
    # print('all_brake_boat00',all_brake_boat)




    best_brake_seq = wait_list[best_sort_sequence]
    all_brake_boat = {}
    all_brake_times = 0
    in_brake_sort = best_brake_seq
    while True:
        if len(in_brake_sort) > 0 and all_brake_times < 3:
            sqare_rate, brake_boat = get_sqare_rate(in_brake_sort, L, W)
            # 将闸室序号,映射到原始信号

            brake_num = list(brake_boat.keys())

            # 更新in_brake_sort
            ##each2=np.delete(each,brake_num,axis=0)
            in_brake_sort = np.delete(in_brake_sort, brake_num, axis=0)

            brake_boat = {best_sort_sequence[k]: v for k, v in brake_boat.items()}

            best_sort_sequence = np.delete(best_sort_sequence, brake_num, axis=0)

            all_brake_boat[all_brake_times] = {'brake_boat': brake_boat, 'best_use_rate': sqare_rate}

            print('第{}闸最优解:组合={} \n 面积利用率={}'.format(all_brake_times, brake_boat, sqare_rate))


            #绘制并保存图形
            plot_save(brake_boat, all_brake_times)

            all_brake_times = all_brake_times + 1
        else:
            break
    print(' all_brake_boat11', all_brake_boat)
    
    
    
    
    
    
    
    #brake_boat = quick_sort_brake(best_brake_seq, L, W)
    
    ##将快速入闸的顺序,对应到最优选择的顺序
    #brake_boat={best_sort_sequence[k]:v for k,v in brake_boat.items()}
    
    ##将最优选择的顺序,对应到最原始的队列中的序号
    #brake_boat={wait_list_num[k]:v for k,v in brake_boat.items()}
    
    



    print('有效进化代数:%s' % (obj_trace.shape[0]))
    print('最优的一代是第 %s 代' % (best_gen + 1))
    print('评价次数:%s' % (myAlgorithm.evalsNum))
    print('时间已过 %s 秒' % (myAlgorithm.passTime))
    return all_brake_boat
示例#11
0
文件: main.py 项目: geatpy-dev/geatpy
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
from MyProblem import MyProblem  # 导入自定义问题接口
import geatpy as ea  # import geatpy
"""
    该案例展示了一个带约束的单目标旅行商问题的求解。问题的定义详见MyProblem.py。
"""

if __name__ == '__main__':
    # 实例化问题对象
    problem = MyProblem()
    # 构建算法
    algorithm = ea.soea_SEGA_templet(
        problem,
        ea.Population(Encoding='P', NIND=50),
        MAXGEN=200,  # 最大进化代数
        logTras=1)  # 表示每隔多少代记录一次日志信息,0表示不记录。
    algorithm.mutOper.Pm = 0.5  # 变异概率
    # 求解
    res = ea.optimize(algorithm,
                      verbose=True,
                      drawing=1,
                      outputMsg=True,
                      drawLog=False,
                      saveFlag=True)
    # 绘制路线图
    if res['success']:
        print('最短路程为:%s' % res['ObjV'][0][0])
        print('最佳路线为:')
        best_journey = np.hstack([0, res['Vars'][0, :], 0])