示例#1
0
        def wrap(img):

            # Selecciono los pixeles con valor distinto de cero
            # ceros = img.select([0]).eq(0).Not()
            ceros = img.neq(0)

            # ORIGINAL IMAGE
            img_orig = img

            # SELECT BANDS
            img_proc = img.select(bandas)

            # CONDICION
            condicion_adentro = (img_proc.gte(mmin)
                                 .And(img_proc.lte(mmax)))

            pout = functions.simple_rename(condicion_adentro, suffix="pout")

            suma = tools.sumBands(nombre)(pout)

            final = suma.select(nombre).multiply(ee.Image(incremento))

            parametrizada = tools.parametrize(rango_orig,
                                              rango_fin)(final)

            return img_orig.addBands(parametrizada)#.updateMask(ceros)
示例#2
0
    def test_sumBands(self):
        newimg = tools.sumBands("added_bands", ("B1", "B2", "B3"))(self.l8SR)

        vals = tools.get_value(newimg, self.p_l8SR_no_cloud, 30)
        suma = int(vals["B1"]) + int(vals["B2"]) + int(vals["B3"])

        self.assertEqual(vals["added_bands"], suma)
示例#3
0
        def wrap(img):
            def compute_score(band, first):
                score_complete = ee.Image(first)
                # score_img = score_complete.select([band])
                img_band = img.select([band])
                min = ee.Dictionary(relation_ee.get(band)).get('min')  # could be None
                max = ee.Dictionary(relation_ee.get(band)).get('max')  # could be None

                score_min = img_band.gte(ee.Image.constant(min))
                score_max = img_band.lte(ee.Image.constant(max))

                final_score = score_min.And(score_max)  # Image with one band

                return tools.replace(score_complete, band, final_score)

            scores = ee.Image(bands_ee.iterate(compute_score, score))
            # parametrized = scores.multiply(self.step)
            final_score = tools.sumBands(name=self.name)(scores) \
                               .divide(ee.Image.constant(length))

            return final_score
示例#4
0
    def collection(self,
                   site,
                   indices=None,
                   normalize=True,
                   bbox=0,
                   force=True):
        """ Apply masks, filters and scores to the given collection group and
        return one image collecion with all images and their score bands.

        :param indices: vegetation indices to include in the final image. If
            None, no index is calculated
        :type indices: tuple
        :param site: Site geometry
        :type site: ee.Geometry
        :param normalize: Whether to normalize the final score from 0 to 1
            or not
        :type normalize: bool
        :return: a namedtuple:

            - col: the collection with filters, masks and scores applied
            - dictprop: dict that will go to the metadata of the Image
        """
        ################# DEBUG #########################################
        # Get site centroid for debugging purpose
        geom = site if isinstance(site, ee.Geometry) else site.geometry()
        centroid = geom.centroid()

        # Function to get the value of the first image of the collection in
        # its centroid
        def get_col_val(col):
            ''' Values of the first image in the centroid '''

            values = tools.imagecollection.get_values(col,
                                                      centroid,
                                                      scale=30,
                                                      side='client')
            pp.pprint(values)

        #################################################################

        # NamedTuple for the OUTPUT
        output = namedtuple("ColBap", ("col", "dictprop"))

        # Si no se pasa una funcion para aplicar antes de los puntajes, se
        # crea una que devuelva la misma imagen
        #If a function is not passed to apply before the scores, it
        # create one that returns the same image
        if self.fmap is None:
            fmap = lambda x: x
        else:
            fmap = self.fmap

        # colfinal = ee.ImageCollection()
        colfinal = ee.List([])

        # Obtengo la region del site
        try:
            region = site.geometry().bounds().getInfo()['coordinates'][0]
        except AttributeError:
            region = site.getInfo()['coordinates'][0]
        except:
            raise AttributeError

        # lista de nombres de los puntajes para sumarlos al final
        #List of names of the scores to add them to the end
        scores = self.score_names
        maxpunt = functools.reduce(lambda i, punt: i + punt.max, self.scores,
                                   0) if self.scores else 1

        # Diccionario de cant de imagenes para incluir en las propiedades
        #Dictionary of images to include in the properties
        toMetadata = dict()

        # collist = self.collist()
        collist = self.colgroup.collections

        if self.verbose:
            print("scores:", scores)
            # print("satellites:", [c.ID for c in collist])
            print("satellites:", self.colgroup.ids)

        for colobj in collist:

            # Obtengo el ID de la coleccion
            #I get the collection ID
            cid = colobj.ID

            # Obtengo el name abreviado para agregar a los metadatos
            #I get the abbreviated name to add to the metadata
            short = colobj.short

            # Imagen del col_id de la coleccion
            #Col_id image of the collection
            bid = colobj.bandIDimg

            # Add col_id to metadata.
            # col_id_11 = 'L8TAO'
            # etc..
            toMetadata["col_id_" + str(colobj.col_id)] = short

            # Collection completa de EE
            c = colobj.colEE

            # Filtro por el site
            if isinstance(site, ee.Feature): site = site.geometry()
            c2 = c.filterBounds(site)

            # Renombra las bandas aca?
            # Rename the bands here?
            # c2 = c2.map(col.rename())

            if self.verbose: print("\nSatellite:", colobj.ID)
            if self.debug:
                pp.pprint(colobj.kws)
                print("SIZE AFTER FILTER SITE:", c2.size().getInfo())

            # Filtro por los años
            #Filter for years
            for anio in self.date_range:
                # Creo un nuevo objeto de coleccion con el id
                col = satcol.Collection.from_id(cid)
                # puntajes = []

                ini = self.season.add_year(anio)[0]
                end = self.season.add_year(anio)[1]

                if self.verbose: print("ini:", ini, ",end:", end)

                # Filtro por fecha
                # Filter by date
                c = c2.filterDate(ini, end)

                if self.debug:
                    n = c.size().getInfo()
                    print("SIZE AFTER FILTER DATE:", n)

                ## FILTROS ESTABAN ACA

                # Si despues de los filters no quedan imgs, saltea..
                #If there are no imgs left after the filters, skip ...
                size = c.size().getInfo()
                if self.verbose: print("size after filters:", size)
                if size == 0: continue  # 1

                if self.debug:
                    print("INITIAL CENTROID VALUES", get_col_val(c))

                # corto la imagen con la region para minimizar los calculos
                #I cut the image with the region to minimize the calculations
                if bbox == 0:

                    def cut(img):
                        return img.clip(site)
                else:

                    def cut(img):
                        bounds = site.buffer(bbox)
                        return img.clip(bounds)

                c = c.map(cut)

                if self.debug:
                    print("AFTER CLIPPING WITH REGION", get_col_val(c))

                # MASKS
                if self.masks:
                    for m in self.masks:
                        if m != None:
                            c = c.map(m.map(col=col, year=anio, colEE=c))
                            if self.debug:
                                print("AFTER THE MASK " + m.nombre,
                                      get_col_val(c))

                if self.debug:
                    print("BEFORE THE MASK:", get_col_val(c))

                # Transformo los valores enmascarados a cero
                # Transform the masked values ​​to zero
                # c = c.map(tools.mask2zero)
                c = c.map(tools.image.mask2zero)

                if self.debug:
                    print("After 0 Transform:", get_col_val(c))

                # Renombra las bandas con los datos de la coleccion
                # Rename the bands with the collection data
                c = c.map(col.rename(drop=True))

                # Cambio las bandas en comun de las collections
                # Change the common bands of the collections
                bandasrel = []

                if self.debug:
                    print("AFTER RENAMING BANDS:", get_col_val(c))

                # Escalo a 0-1
                c = c.map(col.do_scale())

                if self.debug:
                    if c.size().getInfo() > 0:
                        print("AFTER SCALING:", get_col_val(c))

                # Indices
                if indices:
                    for i in indices:
                        f = col.INDICES[i]
                        c = c.map(f)
                        if self.debug:
                            print("SIZE AFTER COMPUTE " + i,
                                  c.size().getInfo())

                # Antes de aplicar los puntajes, aplico la funcion que pasa
                # el usuario
                # Before applying the scores, I apply the function that the user passes
                c = c.map(fmap)

                # Puntajes
                # Scores
                if self.scores:
                    for p in self.scores:
                        if self.verbose: print("** " + p.name + " **")
                        # Espero el tiempo seteado en cada puntaje
                        # I wait for the time set in each score
                        sleep = p.sleep
                        for t in range(sleep):
                            sys.stdout.write(str(t + 1) + ".")
                            if (t + 1) == sleep: sys.stdout.write('\n')
                            time.sleep(1)
                        c = c.map(p.map(col=col, year=anio, colEE=c,
                                        geom=site))

                        # DEBUG
                        if self.debug and n > 0:
                            print("value:", get_col_val(c))

                # Filtros
                if self.filters:
                    for filter in self.filters:
                        c = filter.apply(c, col=col, anio=self.year)

                # METODO NUEVO: selecciono las bandas en comun desp de unir
                # todas las collections usando un metodo distinto
                # NEW METHOD: I select the bands in common after uniting all the collections using a different method

                if self.debug:
                    if c.size().getInfo() > 0:
                        print("AFTER SELECTING COMMON BANDS:", get_col_val(c))

                # Convierto los valores de las mascaras a 0
                # I convert the values ​​of the masks to 0
                c = c.map(tools.mask2zero)

                # Agrego la band de fecha a la imagen
                # I add the date band to the image
                c = c.map(date.Date.map())

                # Agrego la band col_id de la coleccion
                def addBandID(img):
                    return img.addBands(bid)

                c = c.map(addBandID)

                if self.debug:
                    print("AFTER ADDING col_id BAND:", get_col_val(c))

                # Convierto a lista para agregar a la coleccion anterior
                # I convert to list to add to the previous collection
                c_list = c.toList(2500)
                colfinal = colfinal.cat(c_list)

                # Agrego col id y year al diccionario para propiedades
                # I add col id and year to the dictionary for properties
                n_imgs = "n_imgs_{cid}_{a}".format(cid=short, a=anio)
                toMetadata[n_imgs] = functions.get_size(c)

        # comprueba que la lista final tenga al menos un elemento
        # check that the final list has at least one element
        # s_fin = colfinal.size().getInfo()  # 2
        s_fin = functions.get_size(colfinal)

        # DEBUG
        if self.verbose: print("final collection size:", s_fin)

        if s_fin > 0:
            newcol = ee.ImageCollection(colfinal)

            # Selecciono las bandas en comun de todas las imagenes
            # I select the common bands of all the images
            newcol = functions.select_match(newcol)

            if self.debug: print("BEFORE score:", scores, "\n", get_col_val(c))

            # Calcula el puntaje total sumando los puntajes
            # Calculate the total score by adding the scores
            ftotal = tools.sumBands("score", scores)
            newcol = newcol.map(ftotal)

            if self.debug:
                print("AFTER score:", get_col_val(c))

            if normalize:
                newcol = newcol.map(
                    tools.parametrize((0, maxpunt), (0, 1), ("score", )))

            if self.debug:
                print("AFTER parametrize:", get_col_val(c))

            return output(newcol, toMetadata)
        elif force:
            bands_from_col = self.colgroup.bandsrel()
            bands_from_scores = self.score_names if self.score_names else [
                'score'
            ]
            bands_from_indices = list(indices) if indices else []
            bands = bands_from_col + bands_from_scores + bands_from_indices

            img = ee.Image.constant(0).select([0], [bands[0]])

            for i, band in enumerate(bands):
                if i == 0: continue
                newimg = ee.Image.constant(0).select([0], [band])
                img = img.addBands(newimg)

            return output(ee.ImageCollection([img]), toMetadata)
        else:
            return output(None, toMetadata)