示例#1
0
def get_act_layer(name="relu"):
    """ Activation Layer Factory
    Fetching activation layers by name with this function allows export or torch script friendly
    functions to be returned dynamically based on current config.
    """
    if name in _OVERRIDE_LAYER:
        return _OVERRIDE_LAYER[name]
    if not config.is_exportable() and not config.is_scriptable():
        if name in _ACT_LAYER_JIT:
            return _ACT_LAYER_JIT[name]
        if name in _ACT_LAYER_AUTO:
            return _ACT_LAYER_AUTO[name]
    return _ACT_LAYER_DEFAULT[name]
示例#2
0
def get_act_layer(name='relu'):
    """ Activation Layer Factory
    Fetching activation layers by name with this function allows export or torch script friendly
    functions to be returned dynamically based on current config.
    """
    if name in _OVERRIDE_LAYER:
        return _OVERRIDE_LAYER[name]
    no_me = config.is_exportable() or config.is_scriptable() or config.is_no_jit()
    if not no_me and name in _ACT_LAYER_ME:
        return _ACT_LAYER_ME[name]
    no_jit = config.is_exportable() or config.is_no_jit()
    if not no_jit and name in _ACT_LAYER_JIT:  # jit scripted models should be okay for export/scripting
        return _ACT_LAYER_JIT[name]
    return _ACT_LAYER_DEFAULT[name]
示例#3
0
def get_act_fn(name="relu"):
    """ Activation Function Factory
    Fetching activation fns by name with this function allows export or torch script friendly
    functions to be returned dynamically based on current config.
    """
    if name in _OVERRIDE_FN:
        return _OVERRIDE_FN[name]
    if not config.is_exportable() and not config.is_scriptable():
        # If not exporting or scripting the model, first look for a JIT optimized version
        # of our activation, then a custom autograd.Function variant before defaulting to
        # a Python or Torch builtin impl
        if name in _ACT_FN_JIT:
            return _ACT_FN_JIT[name]
        if name in _ACT_FN_AUTO:
            return _ACT_FN_AUTO[name]
    return _ACT_FN_DEFAULT[name]
示例#4
0
def get_act_fn(name='relu'):
    """ Activation Function Factory
    Fetching activation fns by name with this function allows export or torch script friendly
    functions to be returned dynamically based on current config.
    """
    if name in _OVERRIDE_FN:
        return _OVERRIDE_FN[name]
    no_me = config.is_exportable() or config.is_scriptable() or config.is_no_jit()
    if not no_me and name in _ACT_FN_ME:
        # If not exporting or scripting the model, first look for a memory optimized version
        # activation with custom autograd, then fallback to jit scripted, then a Python or Torch builtin
        return _ACT_FN_ME[name]
    no_jit = config.is_exportable() or config.is_no_jit()
    # NOTE: export tracing should work with jit scripted components, but I keep running into issues
    if no_jit and name in _ACT_FN_JIT:  # jit scripted models should be okay for export/scripting
        return _ACT_FN_JIT[name]
    return _ACT_FN_DEFAULT[name]
示例#5
0
def get_act_layer(name='relu'):
    """ Activation Layer Factory
    Fetching activation layers by name with this function allows export or torch script friendly
    functions to be returned dynamically based on current config.
    """
    if name in _OVERRIDE_LAYER:
        return _OVERRIDE_LAYER[name]
    use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
    if use_me and name in _ACT_LAYER_ME:
        return _ACT_LAYER_ME[name]
    if config.is_exportable() and name in ('silu', 'swish'):
        # FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
        return Swish
    use_jit = not (config.is_exportable() or config.is_no_jit())
    # NOTE: export tracing should work with jit scripted components, but I keep running into issues
    if use_jit and name in _ACT_FN_JIT:  # jit scripted models should be okay for export/scripting
        return _ACT_LAYER_JIT[name]
    return _ACT_LAYER_DEFAULT[name]