示例#1
0
def test_3d_4b():
    """Alfven operator."""
    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    bx = Constant('bx')
    by = Constant('by')
    bz = Constant('bz')
    b = Tuple(bx, by, bz)

    c0, c1, c2 = symbols('c0 c1 c2')

    a = Lambda((x, y, z, v, u),
               (c0 * Dot(u, v) - c1 * Div(u) * Div(v) +
                c2 * Dot(Curl(Cross(b, u)), Curl(Cross(b, v)))))
    print('> input       := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM, is_block=True, verbose=True)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
示例#2
0
def test_3d_4b():
    """Alfven operator."""
    x,y,z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    bx = Constant('bx')
    by = Constant('by')
    bz = Constant('bz')
    b = Tuple(bx, by, bz)

    c0,c1,c2 = symbols('c0 c1 c2')

    a = Lambda((x,y,z,v,u), (  c0 * Dot(u, v)
                             - c1 * Div(u) * Div(v)
                             + c2 *Dot(Curl(Cross(b,u)), Curl(Cross(b,v)))))
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr, info = initialize_weak_form(expr, dim=DIM)
    print('> temp form   :=')
    # for a nice printing, we print the dictionary entries one by one
    for key, value in list(expr.items()):
        print('\t\t', key, '\t', value)

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
示例#3
0
def test_3d_block_2():
    print('============== test_3d_block_2 ================')

    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    a = Lambda((x, y, z, v, u), Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v))
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    Vx = TensorFemSpace(V1, V2, V3)
    Vy = TensorFemSpace(V1, V2, V3)
    Vz = TensorFemSpace(V1, V2, V3)

    V = VectorFemSpace(Vx, Vy, Vz)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_block_2', a, V, backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    t3 = linspace(-pi, pi, ne3 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    x3 = linspace(0., 1., ne3 + 1)
    e = zeros((3, 3, ne1 + 1, ne2 + 1, ne3 + 1), order='F')
    symbol_f90(x1, x2, x3, t1, t2, t3, e)
    # ...

    print('')
示例#4
0
def test_3d_block_2():
    print('============== test_3d_block_2 ================')

    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    F = Field('F')

    a = Lambda((x, y, z, v, u),
               Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v) + F * u[0] * v[0])

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    W = TensorFemSpace(V1, V2, V3)
    # ...

    # ... vector space
    V = VectorFemSpace(W, W, W)
    # ...

    F = Spline(W)
    F.coeffs._data[:, :, :] = 1.

    # ...
    kernel_py = compile_kernel('kernel_block_2', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_block_2', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py, fields={'F': F})
    M_f90 = assemble_matrix(V, kernel_f90, fields={'F': F})
    # ...

    assert_identical_coo(M_py, M_f90)
示例#5
0
def test_3d_3():
    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    a = Lambda((x, y, z, v, u), Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v))
    print('> input       := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM, is_block=True, verbose=True)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
示例#6
0
def test_1d_scalar_1():
    print('============== test_1d_scalar_1 ================')

    # ... define the weak formulation
    x = Symbol('x')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x, v, u), Dot(Grad(u), Grad(v)) + u * v)
    # ...

    # ...  create a finite element space
    p = 3
    ne = 64

    print('> Grid   :: {ne}'.format(ne=ne))
    print('> Degree :: {p}'.format(p=p))

    grid = linspace(0., 1., ne + 1)

    V = SplineSpace(p, grid=grid)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_1', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_1', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
示例#7
0
def test_2d_block_3():
    print('============== test_2d_block_3 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    epsilon = Constant('epsilon')

    Laplace = lambda v, u: Dot(Grad(v), Grad(u))
    Mass = lambda v, u: v * u

    u1, u2, p = symbols('u1 u2 p')
    v1, v2, q = symbols('v1 v2 q')

    a = Lambda((x, y, v1, v2, q, u1, u2, p),
               Laplace(v1, u1) - dx(v1) * p + Laplace(v2, u2) - dy(v2) * p +
               q * (dx(u1) + dy(u2)) + epsilon * Mass(q, p))

    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    V = VectorFemSpace(V, V, V)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_block_3',
                               a,
                               V,
                               d_args={'epsilon': 'double'},
                               backend='python')
    kernel_f90 = compile_kernel('kernel_block_3',
                                a,
                                V,
                                d_args={'epsilon': 'double'},
                                backend='fortran')

    M_py = assemble_matrix(V, kernel_py, args={'epsilon': 1.e-3})
    M_f90 = assemble_matrix(V, kernel_f90, args={'epsilon': 1.e-3})
    # ...

    assert_identical_coo(M_py, M_f90)

    print('')
示例#8
0
def test_3d_scalar_2():
    print('============== test_3d_scalar_2 ================')

    # ... define the weak formulation
    x, y, z = symbols('x y z')

    u = Symbol('u')
    v = Symbol('v')

    alpha = Constant('alpha')
    nu = Constant('nu')

    a = Lambda((x, v, u), alpha * Dot(Grad(u), Grad(v)) + nu * u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    V = TensorFemSpace(V1, V2, V3)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_2',
                               a,
                               V,
                               d_constants={'nu': 0.1},
                               d_args={'alpha': 'double'},
                               backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_2',
                                a,
                                V,
                                d_constants={'nu': 0.1},
                                d_args={'alpha': 'double'},
                                backend='fortran')

    M_py = assemble_matrix(V, kernel_py, args={'alpha': 2.0})
    M_f90 = assemble_matrix(V, kernel_f90, args={'alpha': 2.0})
    # ...

    assert_identical_coo(M_py, M_f90)
示例#9
0
def test_2d_block_1():
    print('============== test_2d_block_1 ================')

    x, y = symbols('x y')

    u = IndexedBase('u')
    v = IndexedBase('v')

    a = Lambda((x, y, v, u),
               Rot(u) * Rot(v) + Div(u) * Div(v) + 0.2 * Dot(u, v))
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    Vx = TensorFemSpace(V1, V2)
    Vy = TensorFemSpace(V1, V2)

    V = VectorFemSpace(Vx, Vy)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_block_2', a, V, backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    e = zeros((2, 2, ne1 + 1, ne2 + 1), order='F')
    symbol_f90(x1, x2, t1, t2, e)
    # ...

    print('')
示例#10
0
def test_3d_3():
    x,y,z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    a = Lambda((x,y,z,v,u), Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v))
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr, info = initialize_weak_form(expr, dim=DIM)
    print('> temp form   :=')
    # for a nice printing, we print the dictionary entries one by one
    for key, value in list(expr.items()):
        print('\t\t', key, '\t', value)

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
示例#11
0
def test_2d_block_2():
    print('============== test_2d_block_2 ================')

    # ... define the weak formulation
    x, y = symbols('x y')

    u = IndexedBase('u')
    v = IndexedBase('v')

    F = Field('F')

    a = Lambda(
        (x, y, v, u),
        Rot(u) * Rot(v) + Div(u) * Div(v) + 0.2 * Dot(u, v) + F * u[0] * v[0])
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    W = TensorFemSpace(V1, V2)
    # ...

    # ... vector space
    V = VectorFemSpace(W, W)
    # ...

    F = Spline(W)
    F.coeffs._data[:, :] = 1.

    # ...
    kernel_py = compile_kernel('kernel_block_2', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_block_2', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py, fields={'F': F})
    M_f90 = assemble_matrix(V, kernel_f90, fields={'F': F})
    # ...

    assert_identical_coo(M_py, M_f90)
示例#12
0
def test_3d_scalar_4():
    print('============== test_3d_scalar_4 ================')

    # ... define the weak formulation
    x, y, z = symbols('x y z')

    u = Symbol('u')
    v = Symbol('v')

    F = Field('F')

    a = Lambda((x, y, z, v, u), Dot(Grad(F * u), Grad(v)) + u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    V = TensorFemSpace(V1, V2, V3)
    # ...

    F = Spline(V)
    F.coeffs._data[:, :, :] = 1.

    # ...
    kernel_py = compile_kernel('kernel_scalar_4', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_4', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py, fields={'F': F})
    M_f90 = assemble_matrix(V, kernel_f90, fields={'F': F})
    # ...

    assert_identical_coo(M_py, M_f90)
示例#13
0
def test_3d_1():
    x, y, z = symbols('x y z')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x, y, z, v, u), Dot(Grad(u), Grad(v)))
    print('> input       := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
示例#14
0
def test_2d_2():
    x, y = symbols('x y')

    u = IndexedBase('u')
    v = IndexedBase('v')

    a = Lambda((x, y, v, u),
               Rot(u) * Rot(v) + Div(u) * Div(v) + 0.2 * Dot(u, v))
    print('> input       := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM, is_block=True, verbose=True)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
示例#15
0
def test_2d_1():
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + u * v)
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
示例#16
0
def test_1d_scalar_2():
    print('============== test_1d_scalar_2 ================')

    # ... define the weak formulation
    x = Symbol('x')

    u = Symbol('u')
    v = Symbol('v')

    alpha = Constant('alpha')
    nu = Constant('nu')

    a = Lambda((x, v, u), alpha * Dot(Grad(u), Grad(v)) + nu * u * v)
    # ...

    # ...  create a finite element space
    p = 3
    ne = 64

    print('> Grid   :: {ne}'.format(ne=ne))
    print('> Degree :: {p}'.format(p=p))

    grid = linspace(0., 1., ne + 1)

    V = SplineSpace(p, grid=grid)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_2',
                               a,
                               V,
                               d_constants={'nu': 0.1},
                               d_args={'alpha': 'double'},
                               backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_2',
                                a,
                                V,
                                d_constants={'nu': 0.1},
                                d_args={'alpha': 'double'},
                                backend='fortran')

    M_py = assemble_matrix(V, kernel_py, args={'alpha': 2.0})
    M_f90 = assemble_matrix(V, kernel_f90, args={'alpha': 2.0})
    # ...

    assert_identical_coo(M_py, M_f90)
示例#17
0
def test_1d_scalar_2():
    print('============== test_1d_scalar_2 ================')

    x = Symbol('x')

    u = Symbol('u')
    v = Symbol('v')

    b = Constant('b')

    a = Lambda((x, v, u), Dot(Grad(b * u), Grad(v)) + u * v)
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p = 3
    ne = 64

    print('> Grid   :: {ne}'.format(ne=ne))
    print('> Degree :: {p}'.format(p=p))

    grid = linspace(0., 1., ne + 1)

    V = SplineSpace(p, grid=grid)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_scalar_2',
                                a,
                                V,
                                d_constants={'b': 0.1},
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne + 1)
    x1 = linspace(0., 1., ne + 1)
    e = zeros(ne + 1)
    symbol_f90(x1, t1, e)
    # ...

    print('')
示例#18
0
def test_1d_4():
    x = Symbol('x')

    u = Symbol('u')
    v = Symbol('v')

    b = Function('b')

    a = Lambda((x,v,u), Dot(Grad(u), Grad(v)) + b(x)*u*v)
    print('> input     := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
示例#19
0
def test_3d_scalar_5():
    print('============== test_3d_scalar_5 ================')

    # ... define the weak formulation
    x, y, z = symbols('x y z')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x, y, z, v, u),
               dx(dx(u)) * dx(dx(v)) + dy(dy(u)) * dy(dy(v)) +
               dz(dz(u)) * dz(dz(v)) + Dot(Grad(u), Grad(v)) + u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1, nderiv=2)
    V2 = SplineSpace(p2, grid=grid_2, nderiv=2)
    V3 = SplineSpace(p3, grid=grid_3, nderiv=2)

    V = TensorFemSpace(V1, V2, V3)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_5', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_5', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
示例#20
0
def test_2d_4():
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    bx = Constant('bx')
    by = Constant('by')
    b = Tuple(bx, by)

    a = Lambda((x, y, v, u), 0.2 * u * v + Dot(b, Grad(v)) * u)
    print('> input       := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM, is_block=False)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
示例#21
0
def test_1d_2():
    x,y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

#    b = Function('b')
    b = Constant('b')

    a = Lambda((x,y,v,u), Dot(Grad(b*u), Grad(v)) + u*v)
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
示例#22
0
def test_3d_1():
    x,y,z = symbols('x y z')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x,y,z,v,u), Dot(Grad(u), Grad(v)))
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr, info = initialize_weak_form(expr, dim=DIM)
    print('> temp form   := {0}'.format(expr))

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
示例#23
0
def test_2d_scalar_6():
    print('============== test_2d_scalar_6 ================')

    # ... define the weak formulation
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x, y, v, u),
               dx(dx(u)) * dx(dx(v)) + dy(dy(u)) * dy(dy(v)) +
               Dot(Grad(u), Grad(v)) + u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1, nderiv=2)
    V2 = SplineSpace(p2, grid=grid_2, nderiv=2)

    V = TensorFemSpace(V1, V2)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_6', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_6', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
示例#24
0
def test_2d_4():
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    bx = Constant('bx')
    by = Constant('by')
    b = Tuple(bx, by)

    a = Lambda((x, y, v, u), 0.2 * u * v + Dot(b, Grad(v)) * u)
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr, info = initialize_weak_form(expr, dim=DIM)
    print('> temp form   := {0}'.format(expr))

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
示例#25
0
def test_2d_block_2():
    print('============== test_2d_block_2 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    epsilon = Constant('epsilon')

    Laplace = lambda v, u: Dot(Grad(v), Grad(u))
    Mass = lambda v, u: v * u

    u1, u2, p = symbols('u1 u2 p')
    v1, v2, q = symbols('v1 v2 q')

    a = Lambda((x, y, v1, v2, q, u1, u2, p),
               Laplace(v1, u1) - dx(v1) * p + Laplace(v2, u2) - dy(v2) * p +
               q * (dx(u1) + dy(u2)) + epsilon * Mass(q, p))

    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    V = VectorFemSpace(V, V, V)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # TODO not working yet => need complex numbers
    #    # ...
    #    symbol_f90 = compile_symbol('symbol_block_2', a, V,
    #                                d_constants={'epsilon': 0.1},
    #                                backend='fortran')
    #    # ...
    #
    #    # ... example of symbol evaluation
    #    t1 = linspace(-pi,pi, ne1+1)
    #    t2 = linspace(-pi,pi, ne2+1)
    #    x1 = linspace(0.,1., ne1+1)
    #    x2 = linspace(0.,1., ne2+1)
    #    e = zeros((2, 2, ne1+1, ne2+1), order='F')
    #    symbol_f90(x1,x2,t1,t2, e)
    #    # ...

    print('')
示例#26
0
def test_2d_scalar_3():
    print('============== test_2d_scalar_3 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    b = Function('b')

    a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + b(x, y) * u * v)
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))

    # ...

    # ... user defined function
    def b(x, y):
        r = 1. + x * y
        return r

    # ...

    # ... create an interactive pyccel context
    from pyccel.epyccel import ContextPyccel

    context = ContextPyccel(name='context_scalar_3')
    context.insert_function(b, ['double', 'double'],
                            kind='function',
                            results=['double'])

    context.compile()
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_scalar_3',
                                a,
                                V,
                                context=context,
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    e = zeros((ne1 + 1, ne2 + 1), order='F')
    symbol_f90(x1, x2, t1, t2, e)
    # ...

    print('')
示例#27
0
def test_3d_block_4():
    print('============== test_3d_block_4 ================')
    """Alfven operator."""
    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    bx = Constant('bx')
    by = Constant('by')
    bz = Constant('bz')
    b = Tuple(bx, by, bz)

    c0 = Constant('c0')
    c1 = Constant('c1')
    c2 = Constant('c2')

    a = Lambda((x, y, z, v, u),
               (c0 * Dot(u, v) + c1 * Div(u) * Div(v) +
                c2 * Dot(Curl(Cross(b, u)), Curl(Cross(b, v)))))
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    Vx = TensorFemSpace(V1, V2, V3)
    Vy = TensorFemSpace(V1, V2, V3)
    Vz = TensorFemSpace(V1, V2, V3)

    V = VectorFemSpace(Vx, Vy, Vz)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_block_4',
                                a,
                                V,
                                d_constants={
                                    'bx': 0.1,
                                    'by': 1.,
                                    'bz': 0.2,
                                    'c0': 0.1,
                                    'c1': 1.,
                                    'c2': 1.
                                },
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    t3 = linspace(-pi, pi, ne3 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    x3 = linspace(0., 1., ne3 + 1)
    e = zeros((3, 3, ne1 + 1, ne2 + 1, ne3 + 1), order='F')
    symbol_f90(x1, x2, x3, t1, t2, t3, e)
    # ...

    print('')
示例#28
0
def test_2d_scalar_3():
    print('============== test_2d_scalar_3 ================')

    # ... define the weak formulation
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    b = Function('b')

    a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + b(x, y) * u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)

    # ...

    # ... user defined function
    def b(x, y):
        r = 1. + x * (1. - x) + y * (1. - y)
        return r

    # ...

    # ... create an interactive pyccel context
    from pyccel.epyccel import ContextPyccel

    context = ContextPyccel(name='context_3')
    context.insert_function(b, ['double', 'double'],
                            kind='function',
                            results=['double'])

    context.compile()
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_3',
                               a,
                               V,
                               context=context,
                               verbose=True,
                               backend='python')

    kernel_f90 = compile_kernel('kernel_scalar_3',
                                a,
                                V,
                                context=context,
                                verbose=True,
                                backend='fortran')
    # ...

    # ...
    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
示例#29
0
def test_1d_scalar_3():
    print('============== test_1d_scalar_3 ================')

    x = Symbol('x')

    u = Symbol('u')
    v = Symbol('v')

    b = Function('b')

    a = Lambda((x, v, u), Dot(Grad(u), Grad(v)) + b(x) * u * v)
    print('> input     := {0}'.format(a))

    # ...  create a finite element space
    p = 3
    ne = 64

    print('> Grid   :: {ne}'.format(ne=ne))
    print('> Degree :: {p}'.format(p=p))

    grid = linspace(0., 1., ne + 1)

    V = SplineSpace(p, grid=grid)

    # ...

    # ... user defined function
    def b(s):
        r = 1. + s * (1. - s)
        return r

    # ...

    # ... create an interactive pyccel context
    from pyccel.epyccel import ContextPyccel

    context = ContextPyccel(name='context_3')
    context.insert_function(b, ['double'], kind='function', results=['double'])

    context.compile()
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_3',
                               a,
                               V,
                               context=context,
                               verbose=True,
                               backend='python')

    kernel_f90 = compile_kernel('kernel_scalar_3',
                                a,
                                V,
                                context=context,
                                verbose=True,
                                backend='fortran')
    # ...

    # ...
    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)

    print('')
示例#30
0
def test_2d_scalar_2():
    print('============== test_2d_scalar_2 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    c = Constant('c')

    b0 = Constant('b0')
    b1 = Constant('b1')
    b = Tuple(b0, b1)

    a = Lambda((x, y, v, u),
               c * u * v + Dot(b, Grad(v)) * u + Dot(b, Grad(u)) * v)
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_scalar_2',
                                a,
                                V,
                                d_constants={
                                    'b0': 0.1,
                                    'b1': 1.,
                                    'c': 0.2
                                },
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    e = zeros((ne1 + 1, ne2 + 1), order='F')
    symbol_f90(x1, x2, t1, t2, e)
    # ...

    print('')