def learn_embedding(self, graph=None, edge_f=None, is_weighted=False, no_python=False): c_flag = True if not graph and not edge_f: raise Exception('graph/edge_f needed') if no_python: try: from c_ext import graphFac_ext except ImportError: print( 'Could not import C++ module for Graph Factorization. Reverting to python implementation. Please recompile graphFac_ext from graphFac.cpp using bjam' ) c_flag = False if c_flag: if edge_f: graph = graph_util.loadGraphFromEdgeListTxt(edge_f) graph_util.saveGraphToEdgeListTxt(graph, 'tempGraph.graph') is_weighted = True edge_f = 'tempGraph.graph' t1 = time() graphFac_ext.learn_embedding(edge_f, "tempGraphGF.emb", True, is_weighted, self._d, self._eta, self._regu, self._max_iter) self._X = graph_util.loadEmbedding('tempGraphGF.emb') t2 = time() return self._X, (t2 - t1) if not graph: graph = graph_util.loadGraphFromEdgeListTxt(edge_f) t1 = time() self._node_num = graph.number_of_nodes() self._X = 0.01 * np.random.randn(self._node_num, self._d) for iter_id in range(self._max_iter): if not iter_id % self._print_step: [f1, f2, f] = self._get_f_value(graph) print('\t\tIter id: %d, Objective: %g, f1: %g, f2: %g' % (iter_id, f, f1, f2)) for i, j, w in graph.edges(data='weight', default=1): if j <= i: continue term1 = -(w - np.dot(self._X[i, :], self._X[j, :])) * self._X[j, :] term2 = self._regu * self._X[i, :] delPhi = term1 + term2 self._X[i, :] -= self._eta * delPhi t2 = time() return self._X, (t2 - t1)
def learn_embedding(self, graph=None, edge_f=None, is_weighted=False, no_python=True): c_flag = True if not graph and not edge_f: raise Exception('graph/edge_f needed') if no_python: if sys.platform[0] == "w": args = ["gem/c_exe/gf.exe"] else: args = ["gem/c_exe/gf"] if not graph and not edge_f: raise Exception('graph/edge_f needed') if edge_f: graph = graph_util.loadGraphFromEdgeListTxt(edge_f) graphFileName = 'gem/intermediate/%s_gf.graph' % self._data_set embFileName = 'gem/intermediate/%s_%d_gf.emb' % (self._data_set, self._d) # try: # f = open(graphFileName, 'r') # f.close() # except IOError: graph_util.saveGraphToEdgeListTxt(graph, graphFileName) args.append(graphFileName) args.append(embFileName) args.append("1") # Verbose args.append("1") # Weighted args.append("%d" % self._d) args.append("%f" % self._eta) args.append("%f" % self._regu) args.append("%d" % self._max_iter) args.append("%d" % self._print_step) t1 = time() try: call(args) except Exception as e: print(str(e)) c_flag = False print('./gf not found. Reverting to Python implementation. Please compile gf, place node2vec in the path and grant executable permission') if c_flag: try: self._X = graph_util.loadEmbedding(embFileName) except FileNotFoundError: self._X = np.random.randn(len(graph.nodes), self._d) t2 = time() try: call(["rm", embFileName]) except: pass return self._X, (t2 - t1) if not graph: graph = graph_util.loadGraphFromEdgeListTxt(edge_f) t1 = time() self._node_num = len(graph.nodes) self._X = 0.01 * np.random.randn(self._node_num, self._d) for iter_id in range(self._max_iter): if not iter_id % self._print_step: [f1, f2, f] = self._get_f_value(graph) print('\t\tIter id: %d, Objective: %g, f1: %g, f2: %g' % ( iter_id, f, f1, f2 )) for i, j, w in graph.edges(data='weight', default=1): if j <= i: continue term1 = -(w - np.dot(self._X[i, :], self._X[j, :])) * self._X[j, :] term2 = self._regu * self._X[i, :] delPhi = term1 + term2 self._X[i, :] -= self._eta * delPhi t2 = time() return self._X, (t2 - t1)