def improvise(message): print(" >>> " + message.from_user.first_name + " : " + message.text) if "📝" in message.text: db = Db(sqlite3.connect('booba.db'), Sql()) generator = Generator('booba', db, Rnd()) msg = generator.generate(' ') + "\n" + generator.generate(' ') bot.send_message(message.chat.id, msg)
def generate(name, count): db = Db(sqlite3.connect(name + '.db'), Sql()) generator = Generator(name, db, Rnd()) markov_text = [] for i in range(0, count): markov_text.append(generator.generate(WORD_SEPARATOR)) return markov_text
def pontificate(bot, trigger): print "Generating sentence..." markLen = [int(x) for x in trigger.split() if x.isdigit()] db = Db(sqlite3.connect(NAME + '.db'), Sql()) gen = Generator(NAME, db, Rnd()) for i in range(0, DEFAULT_LENGTH): bot.say(gen.generate(WORD_SEPARATOR))
def main(): generator = Generator() data = util.file_contents('app.gen') instructions = data.split("\n") for instruction in instructions: generator.add_instruction(instruction) generator.process()
def genMaze(self, size, alg, ID, name): size = int(size) maze = Generator(name, size, size) if alg == 'RB': time2gen = maze.reveseBacktracking() elif alg == 'BT': time2gen = maze.BinaryTree() else: return 'invalid input' maze.drawMaze() maze.saveMaze(time2gen)
def __init__(self, f, phase): self._file = f self._phase = phase self.success = True self.output = GenericOutput(f.name) self.lex = Scanner(f) self.fork = TokenForkWrapper(self.lex, self.output.token) self.syn = Parser(prodcution_handler=self.output, error_handler=self.output) self.sem = SemanticAnalyzer(output=self.output) self.gen = Generator()
def generate_music(saved_dictionary): vocab_stoi = saved_dictionary['vocab'] vocab_itos = saved_dictionary['vocab_itos'] gen = Generator(len(vocab_stoi), 64) gen.load_state_dict(saved_dictionary['model_state_dict']) gen.eval() # store the ABC as a string song = sample_sequence(gen, vocab_stoi, vocab_itos, 500, 0.6, output_file=False, print_out=False) #write the abc string into a file for conversions with open("./tempABC/song.abc", 'w') as writer: writer.write(song)
def test_generated_sequence_is_correct(self): self.db.count_values = [ OrderedDict([('the', 2), ('a', 1)]), OrderedDict([('mat', 1), ('cat', 1)]), OrderedDict([('sat', 2)]), OrderedDict([('on', 1), ('under', 4)]), OrderedDict([('my', 2), ('the', 2)]), OrderedDict([('mat', 1), ('cat', 1)]), OrderedDict([('$', 1)]) ] self.rnd.vals = [1, 2, 2, 1, 4, 1, 1] self.assertEqual( Generator('name', self.db, self.rnd).generate(' '), 'the cat sat on the mat') self.assertEqual( self.db.get_word_count_args, [['^'], ['the'], ['cat'], ['sat'], ['on'], ['the'], ['mat']]) self.assertEqual(self.rnd.maxints, [3, 2, 2, 5, 4, 2, 1])
def MarkovGenerator(sentence_list, depth, db_filepath, db=None, rnd=None): """Generator that generates new sentences from a list of sentences. Arguments: sentence_list List of strings, each being a single sentence to learn from depth Depth of analysis at which to build the Markov chain db_filepath Path to file where sqlite database will be stored db (optional) Db object (for mocking in unit tests) rnd (optional) Rnd object (for mocking in unit tests)""" if not db: db = Db(sqlite3.connect(db_filepath), Sql()) db.setup(depth) if not rnd: rnd = Rnd() parser = Parser(DB_NAME, db, SENTENCE_SEPARATOR).parse_list(sentence_list) generator = Generator(DB_NAME, db, rnd) while True: sentence = generator.generate(WORD_SEPARATOR).strip() if len(sentence) == 0: continue # avoid generating the empty string else: yield sentence
def load_model(): netG = Generator(1, feature_size).to(device) chkpt = torch.load("models/gan_model_2/_1_netG_37.pth") netG.load_state_dict(chkpt) netG.eval() return netG
from condition import * from customer import Customer from gen import Generator # Inputs - change as necessary CUSTOMER_BANK_ACCOUNT_NUMBER = "13659275" CUSTOMER_BANK_SORT_CODE = "23-05-33" CUSTOMER_PREVIOUS_PINS = ["1948", "4729", "6758", "3648"] # customer and generator construction c = Customer(CUSTOMER_BANK_ACCOUNT_NUMBER, CUSTOMER_BANK_SORT_CODE, CUSTOMER_PREVIOUS_PINS) gen = Generator() # Add more conditions as necessary gen.add_cond(MoreThan2Consec()) gen.add_cond(ConsecSeq()) gen.add_cond(PrevPins(depth=3)) gen.add_cond(InAccNum()) gen.add_cond(InSortCode()) # running the generator print(gen.gen(c))
sent = nlp(sent) song_vec_sents.append(sent.vector) except: print(song) song_vec_sents = np.array(song_vec_sents) return song_vec_sents def __len__(self): return source_limit # len(self.df) dt_x = LyricsDataSet(lyrics).__getitem__(50) print(dt_x.shape) netG = Generator(1, feature_size).to(device) netD = Descriminator(1, feature_size).to(device) print(netG) print(netD) # criterion bce = nn.BCELoss() # optimizers optimizerG = optim.Adam(netG.parameters(), lr=learning_rate, betas=(beta_1, 0.999)) optimizerD = optim.Adam(netD.parameters(), lr=learning_rate, betas=(beta_1, 0.999)) # misc real_labels = torch.ones(batch_size, device=device) fake_labels = torch.zeros(batch_size, device=device)
from rnd import Rnd import sys import sqlite3 import codecs SENTENCE_SEPARATOR = '_' WORD_SEPARATOR = ' ' if __name__ == '__main__': args = sys.argv usage = 'Usage: %s (parse <name> <depth> <path to txt file>|gen <name> <count>)' % ( args[0], ) if (len(args) < 3): db = Db(sqlite3.connect('booba' + '.db'), Sql()) generator = Generator('booba', db, Rnd()) print(generator.generate(WORD_SEPARATOR)) print(generator.generate(WORD_SEPARATOR)) else: mode = args[1] name = args[2] if mode == 'parse': if (len(args) != 5): raise ValueError(usage) depth = int(args[3]) file_name = args[4] db = Db(sqlite3.connect(name + '.db'), Sql())
def generate(number, name): count = number db = Db(sqlite3.connect(name + '.db'), Sql()) generator = Generator(name, db, Rnd()) for i in range(0, count): yield generator.generate(WORD_SEPARATOR)
def create_tweet(): db = Db(sqlite3.connect(NAME + '.db'), Sql()) generator = Generator(NAME, db, Rnd()) tweet_candidate = generator.generate(WORD_SEPARATOR) return tweet_candidate if check_length(tweet_candidate) else create_tweet()
import h5py filename = "TestICs.0.hdf5" n_DM = int(1e5) n_gas = int(1e5) M_halo = 1e12 M_disk = 1e10 R_NFW = 20 c_NFW = 40 R_gas = 10 max_gas = 30 Z_gas = 2 G = 4.302e-6 # kpc Ms km/s print("Generating particles, this may take some time") gen = Generator(n_DM, n_gas, M_halo, M_disk, R_NFW, c_NFW, R_gas, max_gas, Z_gas, G) print("Writing to HDF5") op = h5py.File(filename, 'w') print("Writing head") write_head(op, [n_gas, n_DM, 0, 0, 0, 0], [M_disk / n_gas, M_halo / n_DM, 0, 0, 0, 0], 0, z=1) print("Writing gas") write_block(op, 0, np.array([gen.gas_x, gen.gas_y, gen.gas_z]).T, np.array([gen.gas_v_x, gen.gas_v_y, gen.gas_v_z]).T, np.arange(0, n_gas)) print("Writing dm")
c_nfw = float(nfw['NFWc']) max_gas = float(gas['MaxGas']) max_star = float(star['MaxStar']) ic_filename = config['GadgetFiles']['InitCondFile'] + ".hdf5" ul_cm = float(config['Units']['UnitLength_in_cm']) um_g = float(config['Units']['UnitMass_in_g']) uv_cms = float(config['Units']['UnitVelocity_in_cm_per_s']) G = 6.674e-8 * (1 / (ul_cm * (uv_cms**2) / um_g)) # Actually generate particles print("Generating Particles...") print("Gas...") gen_gas = Generator(0, n_gas, M_halo, M_gas, R_nfw, c_nfw, R_gas, max_gas, Z_gas, G) print("Stars...") gen_star = Generator(0, n_star, M_halo, M_star, R_nfw, c_nfw, R_star, max_gas, Z_gas, G) print("Writing IC File... {}".format(ic_filename)) op = h5py.File(ic_filename, 'w') write_head(op, [n_gas, 0, 0, 0, n_star, 0], [M_gas / n_gas, 0, 0, 0, M_star / n_star, 0], 0, z=1) # Gas write_block(op, 0, np.array([gen_gas.gas_x, gen_gas.gas_y, gen_gas.gas_z]).T,
for _ in range(6): # TODO add a flag to check if tree was modified t = CastTransformer().transform(t) t = SubscriptTransformer().transform(t) t = MemberAccessTransformer().transform(t) t = SizeofExprTransformer().transform(t) t = ConstTransformer(True).transform(t) lt = LiteralTransformer(ni) t = lt.transform(t) if args.tree: print() print("Tree after transform:") print(t.pretty()) cg = CallGraph() cg.visit(t) g = Generator(cg, lt, ni, backend, not args.no_subsections, lit, args.stack) args.o.write(format(g.generate(t))) args.o.write("\n") except NatrixError as e: file, line = lit.translatePosition(e.position) sys.stderr.write("Error: {}:{}: {}\n".format(file, line, e.msg)) sys.exit(1) except VisitError as e: file, line = lit.translatePosition(e.orig_exc.position) sys.stderr.write("Error: {}:{}: {}\n".format(file, line, e.orig_exc.msg)) sys.exit(1) except LarkError as e: file, line = lit.translateLine(e.line) sys.stderr.write("Syntax error in {}:{} {}\n".format( file, line, str(e)))
args[0], ) if (len(args) < 3): raise ValueError(usage) mode = args[1] name = args[2] if mode == 'parse': if (len(args) != 5): raise ValueError(usage) depth = int(args[3]) file_name = args[4] db = Db(sqlite3.connect(name + '.db'), Sql()) db.setup(depth) txt = codecs.open(file_name, 'r', 'utf-8').read() Parser(name, db, SENTENCE_SEPARATOR, WORD_SEPARATOR).parse(txt) elif mode == 'gen': count = int(args[3]) db = Db(sqlite3.connect(name + '.db'), Sql()) generator = Generator(name, db, Rnd()) for i in range(0, count): print(generator.generate(WORD_SEPARATOR)) else: raise ValueError(usage)
def __init__(self, cmd_input): self.cli = CLI(cmd_input) self.generator = Generator() self.fill_options()