def image_histogram_mapping_segmentation(*x, uv=False, normalize=False, reg_head=True, weighted=False, multioutput=False, clustering=False, correct=True):
    mask = x[1]
    img = x[0]
    gt = tf.cast(x[-1], dtype=tf.float32)
    if gt != None and correct:
        gt1 = tf.reshape(gt, (-1, 3))
        img = img / gt1[0]
        gt = gt1[1] / gt1[0]
        gt = tf.reshape(gt, (3,))
    h = tf.image.rgb_to_hsv(img)[..., 0]
    img_uv, Iy = histogram.to_uv(img)

    Iy = tf.where(Iy < 0.01, 0., Iy)
    if normalize:
        Iy = tf.image.per_image_standardization(Iy[:, :, tf.newaxis])
        Iy = Iy[..., 0]

    img_hy = tf.stack([Iy, h, Iy], axis=-1)
    img_uv = tf.stack([Iy, img_uv[..., 0], img_uv[..., 1]], axis=-1)
    img = img_uv if uv else img

    if multioutput:
        features = tf.concat((img, img_hy), axis=-1)

        if weighted:
            return features, mask, gt, tf.where(Iy == 0., 0., 1.), tf.ones((1,))
        return features, mask, gt

    elif clustering:
        gt1, gt2 = gt[:3], gt[3:]
        gt1 = gt1 / (tf.linalg.norm(gt1, axis=-1, ord=2, keepdims=True) + 1e-7)
        gt2 = gt2 / (tf.linalg.norm(gt2, axis=-1, ord=2, keepdims=True) + 1e-7)
        gt1 = visualizer.create_mask(gt1, sz =img.shape[-3:-1])
        gt2 = visualizer.create_mask(gt2, sz =img.shape[-3:-1])
        features = tf.concat((img, img_hy, gt1, gt2), axis=-1)
        # gt_mask = mask[..., :3]
        # gt_mask = gt_mask / (tf.linalg.norm(gt_mask, axis=-1, ord=2, keepdims=True) + 1e-7)

        # mask = mask[..., -1:]

        if weighted:
            return features, mask, tf.where(Iy == 0., 0., 1.)
        return features, mask

    elif reg_head:
        features = tf.concat((img, img_hy), axis=-1)
        gt_uv, gty = histogram.to_uv(tf.reshape(gt, (-1, 3)))
        gt_uv = tf.reshape(gt_uv, (2,))
        gt = gt_uv if uv else gt
        gt = [mask, gt] if multioutput else tf.concat([mask, tf.broadcast_to(gt, (*mask.shape[:-1], *gt.shape))], axis=-1)
    else:
        features = tf.concat((img, img_hy), axis=-1)
        gt = x[1]
    if weighted:
        return features, gt, tf.where(Iy == 0., 0., 1.)
    return features, gt
示例#2
0
        def on_epoch_end(self, epoch, logs=None):
            if epoch % 4 != 0:
                return
            for data in self.images:
                img, mask = data[0], data[1]
                pred_mask = model.predict(img)
                gt1, gt2 = None, None
                if type(mask) == tuple:
                    gt1 = mask[-2]
                    gt2 = mask[-1]
                    mask = mask[-3]
                    pgt1 = pred_mask[-2][..., :3]
                    pgt2 = pred_mask[-1][..., :3]
                    pred_mask = pred_mask[-3][..., :mask.shape[-1]]
                mask = mask[0]
                pred_mask = pred_mask[0]
                if gt1 is not None:
                    if gt1.shape[-1] == 2:
                        gt1 = tf.stack([
                            gt1[..., 0],
                            tf.ones_like(gt1[..., 0]), gt1[..., 1]
                        ],
                                       axis=-1)
                        pgt1 = tf.stack([
                            pgt1[..., 0],
                            tf.ones_like(pgt1[..., 0]), pgt1[..., 1]
                        ],
                                        axis=-1)
                        gt2 = tf.stack([
                            gt2[..., 0],
                            tf.ones_like(gt2[..., 0]), gt2[..., 1]
                        ],
                                       axis=-1)
                        pgt2 = tf.stack([
                            pgt2[..., 0],
                            tf.ones_like(pgt2[..., 0]), pgt2[..., 1]
                        ],
                                        axis=-1)
                    gt1 = visualizer.create_mask(gt1[0], (10, 10))
                    gt2 = visualizer.create_mask(gt2[0], (10, 10))
                    pgt1 = visualizer.create_mask(pgt1[0], (10, 10))
                    pgt2 = visualizer.create_mask(pgt2[0], (10, 10))
                if gt1 is not None:
                    visualizer.visualize([
                        img[0, :, :, :3], img[0, :, :, 3:6],
                        tf.squeeze(mask[..., :3]),
                        tf.squeeze(pred_mask[..., :3]), gt1, gt2, pgt1, pgt2
                    ])
                else:
                    visualizer.visualize([
                        img[0, :, :, :3], img[0, :, :, 3:6],
                        tf.squeeze(mask[..., :3]),
                        tf.squeeze(pred_mask[..., :3])
                    ])

            print('/nSample Prediction after epoch {}\n'.format(epoch + 1))
def multi_segmentation_mapping(*x, rb=False, clustering=False, regression=False):
    mask = x[1]
    img = x[0]
    gt = x[-1]
    gt = tf.reshape(gt, (-1,3))
    gt = tf.nn.l2_normalize(gt, axis=-1)
    gt = tf.reshape(gt, (-1,))

    h = tf.image.rgb_to_hsv(img)[..., 0]
    if rb:
        _, Iy = histogram.to_rb(img)
        # img = tf.stack([img[..., 0], img[..., 1], Iy],axis=-1)
        gt, _ = histogram.to_rb(gt)
    else:
        _, Iy = histogram.to_uv(img)

    Iy = tf.where(Iy < 0.01, 0., Iy)
    img_hy = tf.stack([Iy, h, Iy], axis=-1)

    if clustering:
        features = tf.concat((img, img_hy), axis=-1)
        gt = visualizer.create_mask(gt, sz =img.shape[-3:-1])
        mask = tf.concat([tf.cast(mask, float), gt], axis=-1)
    elif regression:
        features = tf.concat((img, img_hy), axis=-1)
        mask = mask / (tf.linalg.norm(mask, axis=-1, ord=2, keepdims=True) + 1e-7)
    else:
        img_cor = img / gt[0]
        features = tf.concat((img_cor, img_hy), axis=-1)

    return features, \
           mask, \
           tf.where(Iy == 0., 0., 1.)
def multi_representation_histogram(*x, depth, shrink, known_illuminant=False):
    images = __process_images__(x[0])
    hists = __hr__(images, depth, shrink)

    if known_illuminant:
        ct = histogram.color_table(depth)
        gt1 = visualizer.create_mask(x[-1][:3], (depth, depth))
        ct = tf.sqrt(cosine_similarity(ct, gt1, keepdims=True))
        ct = tf.tile(ct[tf.newaxis, :, :], (hists.shape[0], 1, 1, 1))
        print(ct.shape, hists.shape)
        hists = hists * ct

    return (hists, *x[1:], images)
def transformation_histogram(*x, depth, shrink, known_illuminant=False):
    images = __process_images__(x[0], indecies=[0,3])
    hists = __hr__(images, depth, shrink)
    images = None
    images_corrected = __process_images__(x[-1])
    hists2 = __hr__(images_corrected, depth, shrink)

    if known_illuminant:
        ct = histogram.color_table(depth)
        gt1 = visualizer.create_mask(x[-1][:3], (depth, depth))
        ct = tf.sqrt(cosine_similarity(ct, gt1, keepdims=True))
        ct = tf.tile(ct[tf.newaxis, :, :], (hists.shape[0], 1, 1, 1))
        print(ct.shape, hists.shape)
        hists = hists * ct

    return (hists, hists2, *x[1:], x[0])
        plt.bar(x, yb[0, 0], width=1 / d)

        #HISTOGRAM PEAKS
        peaks, props = s.find_peaks(yb[0, 0], distance=18)
        peak_heights = np.array(list(map(lambda x: yb[0, 0, x], peaks)))
        pph = sorted(zip(peaks, peak_heights),
                     key=lambda x: x[1],
                     reverse=True)
        peaks = np.array(list(map(lambda x: x[0], pph)))
        colors = ["red", "green", "yellow", "cyan", "magenta"]
        ills = []
        for p, c in zip(peaks, colors):
            p1 = yb[0, 0, p]
            ys = np.arange(0., p1, p1 / 100)[:100]
            plt.plot(np.ones(100) * p / d, ys, color=c)
            ill = v.create_mask(tf.convert_to_tensor([p / d, 1, 1]), [10, 10])
            ills.append(tf.image.hsv_to_rgb(ill))
        # inp = inpt_rg[Iy > 0]
        # kde = st.gaussian_kde(dataset=tf.reshape(inp, (-1,)))
        # plt.plot(x, kde.evaluate(x))
        plt.show()
        v.visualize(ills)

        v.visualize([Cube2Dataset.get_image(img_path, 'gt.png', 256, 512)])

        #2D HISTOGRAM
        # plt.bar(x, y[0,1], width=1/64)
        # plt.show()
        # v.visualize(inpt)
        #
        # hist2d = DiffHist2D(64, (-2, 2))
示例#7
0
 def plot_prediction(img, mask, pred_mask):
     gt1, gt2 = None, None
     if type(mask) == tuple:
         gt1 = tf.cast(mask[-2], tf.float32)
         gt2 = tf.cast(mask[-1], tf.float32)
         pgt1 = pred_mask[-2]
         pgt2 = pred_mask[-1]
         m = mask[-3]
         y = pred_mask[-3]
         if len(mask) == 6:
             m += 1 - mask[-4]
             m /= 2
             y += 1 - pred_mask[-4]
             y /= 2
         pred_mask = y
         mask = m
     mask = mask[0]
     pred_mask = pred_mask[0]
     if gt1 is not None:
         corrected, gt_mask = correct(img[0, :, :, :3], pred_mask[..., :3],
                                      pgt1[0], pgt2[0])
         corrected1, gt_mask1 = correct(img[0, :, :, :3], mask[..., :3],
                                        gt1[0], gt2[0])
         corrected11, _ = correct(img[0, :, :, :3], mask[..., :3], pgt1[0],
                                  pgt1[0])
         corrected12, _ = correct(img[0, :, :, :3], mask[..., :3], pgt2[0],
                                  pgt2[0])
         # visualizer.visualize(img[:, :, :, :3])
         # visualizer.visualize([corrected1, corrected])
         # visualizer.visualize([corrected11, corrected12])
         # visualizer.visualize([gt_mask1, gt_mask])
         # visualizer.visualize([tf.squeeze(mask[..., :3]), tf.squeeze(pred_mask[..., :3])], cb=False)
         if gt1.shape[-1] == 2:
             gt1 = tf.stack(
                 [gt1[..., 0],
                  tf.ones_like(gt1[..., 0]), gt1[..., 1]],
                 axis=-1)
             pgt1 = tf.stack(
                 [pgt1[..., 0],
                  tf.ones_like(pgt1[..., 0]), pgt1[..., 1]],
                 axis=-1)
             gt2 = tf.stack(
                 [gt2[..., 0],
                  tf.ones_like(gt2[..., 0]), gt2[..., 1]],
                 axis=-1)
             pgt2 = tf.stack(
                 [pgt2[..., 0],
                  tf.ones_like(pgt2[..., 0]), pgt2[..., 1]],
                 axis=-1)
         gt1 = visualizer.create_mask(gt1[0], (10, 10))
         gt2 = visualizer.create_mask(gt2[0], (10, 10))
         pgt1 = visualizer.create_mask(pgt1[0], (10, 10))
         pgt2 = visualizer.create_mask(pgt2[0], (10, 10))
     if gt1 is not None:
         visualizer.visualize([
             img[0, :, :, :3], img[0, :, :, 3:6],
             tf.squeeze(mask[..., :3]),
             tf.squeeze(pred_mask[..., :3]), gt1, gt2, pgt1, pgt2,
             corrected, gt_mask
         ])
     else:
         visualizer.visualize([
             img[0, :, :, :3], img[0, :, :, 3:6],
             tf.squeeze(mask[..., :3]),
             tf.squeeze(pred_mask[..., :3])
         ])
    ds_base = dataset(paths,
                      type=dp.TEST,
                      bs=1,
                      cache=False,
                      regression=False,
                      round=False,
                      gt=True,
                      shuffle_buffer_size=1)
    for data in iter(ds_base):
        img, mask, gt = data
        norm = tf.linalg.norm(img, axis=(1, 2, 3))
        img = img * 16
        emask = encode_mask(mask, img)
        visualizer.visualize([
            img[0], mask[0, :, :, 0], emask[0],
            visualizer.create_mask(gt[0, :3], (10, 10)),
            visualizer.create_mask(gt[0, 3:], (10, 10))
        ])

# p = 32
# ds2 = dp.patch_dataset(uv_ds, p, img_shape, mask_shape)
# ds3 = dp.reduce_dataset(ds2, None)
# ds4 = dp.reduce_dataset(dp.histogram_dataset(ds, 64), None)
# ds5 = dp.reduce_dataset(dp.histogram_dataset(dp.patch_dataset(ds, p, mask_shape, mask_shape), 64), None)
# ds6 = dp.timestamp_dataset(ds5, IMG_HEIGHT//2 * IMG_WIDTH//2 // p**2, (1024, 4096), (1024, 1))
# # data5 = next(iter(ds5))
# data6 = next(iter(ds6))
# data1 = next(iter(ds))
# data2 = next(iter(ds2))
# data3 = next(iter(ds3))
# data4 = next(iter(ds4))