def generate_traffic(G, paras_file=None, save_file=None, simple_setup=True, starting_date=[2010, 5, 6, 0, 0, 0],\ coordinates=True, generate_altitudes=True, put_sectors=False, save_file_capacities=None, record_stats_file=None, remove_flights_after_midnight=False, rectificate=None, storymode=False, **paras_control): """ High level function to create traffic on a given network with given parameters. It is not really intented to use as a simulation by itself, but only to generate some synthetic traffic, mainly for the tactical ABM. Returns a set of M1 trajectories. If simple_setup is True, the function uses some default parameters suitable for quick generation of traffic. Parameters ---------- G : hybrid network on which to generate the traffic. paras_file : string, optional path for reading the parameters for the simulations. If None, reads my_paras.py. save_file : string file for saving trajectories with the abm_tactical format. simple_setup : boolean if False, all parameters must be informed. Otherwise some default parameters are used. starting_date : list or tuple of int, optional gives the starting date for the simulations. It is used to have the right dates in output. coordinates : boolean, optional If True, return list of coordinates instead list of labels of navpoints. generate_altitudes : boolean, optional If True, generate synthetic altitudes in output. The altitudes are bootstrapped using the file_traffic file informed in the paras file. put_sectors : boolean, optional If True, the trajectories in ouput have a fifth element which is the sector. save_file_capacities : string, optional If not None, the capacities of the network are written in a txt file in a format readable by the tactical ABM. record_stats_file : string, optional If informed, the visual output of the funtion is written on the file. remove_flights_after_midnight : boolean, optional If True, remove from the trajectories all the ones which land the day after starting_date. rectificate : dictionary, optional If informed, the trajctories will be rectified using the function rectificate_trajectories_network_with_time with parameters given by the dictionary storymode : boolean, optional set the verbosity of the simulation itself. paras_control : additional parameters of values which are externally controlled. Typically, the number of flights. Returns ------- trajectories_coords : list of trajectories. Each point in the trajectories has the format (x, y, z, t), (x, y, z, t, s) or are directly (label, z, t). stats : dictionary with some results about the simulation, like the number of flights rejected, etc. Notes ----- New in 2.9.4. Changed in 2.9.5: Added synthetic altitudes generation. """ print ("Generating traffic on network...") paras = read_paras(paras_file=paras_file, post_process=False) if simple_setup: paras['file_net'] = None paras['G'] = G paras['Nfp'] = G.Nfp # Remark: must match number of pre-computed nav-shortest paths per sec-shortest paths. paras['Nsp_nav'] = 2 paras['unit'] = 15 paras['days'] = 24.*60. paras['file_traffic'] = None paras['ACtot'] = 1000 paras['control_density'] = False paras['departure_times'] = 'uniform' paras['noise'] = 0. paras['nA'] = 1. paras['par'] = [[1.,0.,0.001], [1.,0.,1000.]] paras['STS'] = None paras['N_shocks'] = 0. paras['parallel'] = True paras['old_style_allocation'] = False paras['force'] = True paras['capacity_factor'] = True paras['bootstrap_mode'] = True paras['bootstrap_only_time'] = True #print (paras_control) for p,v in paras_control.items(): paras[p] = v paras = post_process_paras(paras) G = paras['G'] print ("Average capacity:", np.mean([paras['G'].node[n]['capacity'] for n in paras['G'].nodes()])) if 'traffic' in paras.keys(): print ("Number of flights in traffic:", len(paras['traffic'])) #print ("Capacities:", {n:G.node[n]['capacity'] for n in G.nodes()}) with clock_time(): sim = Simulation(paras, G=G, verbose=True) sim.make_simu(storymode=storymode) sim.compute_flags() queue = post_process_queue(sim.queue) M0_queue = post_process_queue(sim.M0_queue) print if record_stats_file!=None: ff = open(record_stats_file, 'w') else: ff = sys.stdout stats = {} print ('Number of rejected flights:', len([f for f in sim.queue if not f.accepted]), '/', len(sim.queue), file=ff) print ('Number of rejected flight plans:', len([fp for f in sim.queue for fp in f.FPs if not fp.accepted]), '/', len(sim.queue)*sim.Nfp, file=ff) print ('', file=ff) stats['rejected_flights'] = len([f for f in sim.queue if not f.accepted]) stats['rejected_flight_plans'] = len([fp for f in sim.queue for fp in f.FPs if not fp.accepted]) stats['flights'] = len(sim.queue) print ('Global metrics for M1:', file=ff) agg_results = extract_aggregate_values_on_queue(queue, paras['par']) for met, res in agg_results.items(): for ac, met_res in res.items(): print ('-', met, "for companies of type", ac, ":", met_res, file=ff) print ('', file=ff) if paras['N_shocks']!=0: agg_results = extract_aggregate_values_on_queue(M0_queue, paras['par']) for met, res in agg_results.items(): for ac, met_res in res.items(): print ('-', met, "for companies of type", ac, ":", met_res, file=ff) if record_stats_file!=None: ff.close() trajectories = compute_M1_trajectories(queue, sim.starting_date) #signature at this point: (n), tt if rectificate!=None: eff_target = rectificate['eff_target'] del rectificate['eff_target'] trajectories, eff, G, groups_rec = rectificate_trajectories_network_with_time(trajectories, eff_target, deepcopy(G), **rectificate) # signature at this point : (n), tt if save_file_capacities!=None: write_down_capacities(G, save_file=save_file_capacities) if coordinates: Converter = TrajConverter() Converter.set_G(G.G_nav) fmt_out = '(x, y, z, t, s)' if put_sectors else '(x, y, z, t)' trajectories_coords = Converter.convert(trajectories, fmt_in='(n), t', fmt_out=fmt_out, #put_sectors=put_sectors, remove_flights_after_midnight=remove_flights_after_midnight, starting_date=starting_date) # trajectories_coords = convert_trajectories(G.G_nav, trajectories, put_sectors=put_sectors, # remove_flights_after_midnight=remove_flights_after_midnight, # starting_date=starting_date) #signature at this point: (x, y, 0, tt) or (x, y, 0, tt, s) if generate_altitudes and paras['file_traffic']!=None: print ("Generating synthetic altitudes...") # Insert synthetic altitudes in trajectories based on a sampling of file_traffic with silence(True): small_sample = G.check_all_real_flights_are_legitimate(paras['traffic'], repair=True) print ("Kept", len(small_sample), "flights for sampling altitudes.") sample_trajectories = convert_distance_trajectories_coords(G.G_nav, small_sample, put_sectors=put_sectors) trajectories_coords = insert_altitudes(trajectories_coords, sample_trajectories) #signature at this point: (x, y, z, tt) or (x, y, z, tt, s) dummy_sector = None if not put_sectors else -1 trajectories_coords = add_first_last_points(trajectories_coords, dummy_sec=dummy_sector) if save_file!=None: os.system('mkdir -p '+dirname(save_file)) write_trajectories_for_tact(trajectories_coords, fil=save_file) return trajectories_coords, stats else: return trajectories, stats
return trajectories, stats if __name__=='__main__': """ =========================================================================== Manual single simulation =========================================================================== """ paras_file = None if len(sys.argv)==1 else sys.argv[1] paras = read_paras(paras_file=paras_file) GG = paras['G'] #ABMvars.G print (header(paras,'SimulationO', version, paras_to_display=['ACtot'])) with clock_time(): sim = Simulation(paras, G=GG, verbose=True) sim.make_simu(storymode=False) sim.compute_flags() queue = post_process_queue(sim.queue) M0_queue = post_process_queue(sim.M0_queue) """ =========================================================================== Some snippets to view the results. =========================================================================== """ if 0: for n in sim.G.nodes(): #print n, sim.G.node[n]['capacity'], sim.G.node[n]['load'] if max(sim.G.node[n]['load']) == sim.G.node[n]['capacity']: