示例#1
0
def get_data(z, filename):
    import generate
    output = generate.story(
        z,
        '/Users/xinzhang/Document/courses/671project/flask/app/static/img/' +
        filename)
    return output
示例#2
0
def get_story(file_path):
    #return 'test'
    return generate.story(z, file_path)
示例#3
0
def tell_a_story(image):
    passage = generate.story(z, image.to_stream(), bw=1)
    return {'passage': passage}
示例#4
0
import generate
z = generate.load_all()
generate.story(z, './images/ex1.jpg')
示例#5
0
# -*- coding: utf-8 -*-
#
#  AIWriter.py
#
#  Copyright 2016 Franz Habison <*****@*****.**>
#
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
#  MA 02110-1301, USA.
#
#

# Info from
# https://www.youtube.com/watch?v=x24VEUEph0Q&feature=youtu.be

import generate

z = generate.load_all()
generate.story(z, "myImage.jpg")
示例#6
0
#generates stories for a folfer of images --useful when evaluating
#sj2842
import glob
import generate
z = generate.load_all()
# from IPython.core.display import Image, display
# from PIL import Image as Img
for filename in glob.iglob('/Users/shreyajain/storyteller/neural-storyteller/images2/*'):
    print('%s' % filename)
    # display(Image(filename))
    generate.story(z, filename)
    print("########## Parameters set k = 200 and bw=50 ###############")
    print(generate.story(z, filename,k=200, bw=50))
    # print("########## Parameters set k = 300 and bw=100 ###############")
    # print(generate.story(z, filename, k=300, bw=50))
    # print("########## Parameters set k = 400 and bw=100 ###############")
    # print(generate.story(z, filename, k=400, bw=50))
	

示例#7
0
import sys,time
import argparse
import config
import generate

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_cache_path', help = 'model cache path')
    parser.add_argument('--type', help = 'train or inference',default='inference')
    parser.add_argument('--input', help = 'input file')
    parser.add_argument('--style', help = 'use style')
    parser.add_argument('--condition_count', type=int,default=100)
    parser.add_argument('--beamwidth', type=int,default=50)
    args = parser.parse_args()

    print args

    if args.type == 'inference':
        config.init(args.model_cache_path)
        z = generate.load_all()
        if args.style:
            s = generate.story(z, args.input,args.condition_count,args.beamwidth,lyric=True)
            
        else:
            s = generate.story(z, args.input,args.condition_count,args.beamwidth)
        #s = generate.story(z, args.input)
        output_file = '/data/output/{}.txt'.format(str(int(time.time())));
        with open(output_file, "w") as f:
            f.write('{}'.format(s))
        print output_file
示例#8
0
    parser.add_argument('--model_cache_path', help='model cache path')
    parser.add_argument('--type',
                        help='train or inference',
                        default='inference')
    parser.add_argument('--input', help='input file')
    parser.add_argument('--style', help='use style')
    parser.add_argument('--condition_count', type=int, default=100)
    parser.add_argument('--beamwidth', type=int, default=50)
    args = parser.parse_args()

    print args

    if args.type == 'inference':
        config.init(args.model_cache_path)
        z = generate.load_all()
        if args.style:
            s = generate.story(z,
                               args.input,
                               args.condition_count,
                               args.beamwidth,
                               lyric=True)

        else:
            s = generate.story(z, args.input, args.condition_count,
                               args.beamwidth)
        #s = generate.story(z, args.input)
        output_file = '/data/output/{}.txt'.format(str(int(time.time())))
        with open(output_file, "w") as f:
            f.write('{}'.format(s))
        print output_file
示例#9
0
import keras
import numpy
import imagenet_utils
import generate
from keras.preprocessing import image


def load_image(file_name):
    img = image.load_img(file_name, target_size=(224, 224))
    im = image.img_to_array(img)
    im = numpy.expand_dims(im, axis=0)
    im = imagenet_utils.preprocess_input(im)
    return im


image = load_image('./images/ex1.jpg')
z = generate.load_all()
generate.story(z, image)
示例#10
0
#as5446
#making files for langauge check
import glob
import generate
z = generate.load_all()
import generate2
y = generate2.load_all()
import generate3
w = generate3.load_all()
fil = open('/Users/shreyajain/Downloads/grammar.txt', 'w')
for filename in glob.iglob('/Users/shreyajain/Downloads/eval/*.jpg'):
    story = generate.story(z, filename, k=100, bw=50)
    story2 = generate2.story(y, filename, k=20, bw=5)
    story3 = generate3.story(w, filename, k=20, bw=5)
    print(story, story2, story3)
    fil.write(story + '\t' + story2 + '\t' + story3)
    fil.write('\n')
示例#11
0
文件: main.py 项目: XINZHANGXZZ/cs671
def get(filename):
    z = generate.load_all()
    output = generate.story(z, filename)
    return output