示例#1
0
def testFilterSpeedBandwidth(n_iterations=5):
    speeds = np.arange(1, 9.5, 0.5)
    inputs = []
    for speed in speeds:
        for j in xrange(n_iterations):
            seed = [np.random.randint(999), np.random.randint(999)]
            inputs.append(
                gd.generateDots(seed, 0, 0, 5, 60, 0, 1, speed))
    pool = multiprocessing.Pool()
    out = pool.map(filterDots, inputs)
    pool.close()

    data = np.array(out)
    summed_me = np.sum(data, axis=1)
    mean_me = np.mean(summed_me.reshape(-1, n_iterations), axis=1)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    colors = b2mpl.get_map('Set1', 'Qualitative', 3).mpl_colors
    ax.add_line(plt.Line2D(speeds, mean_me, color=colors[0]))
    ax.set_xlabel('Motion speed (degrees per s))')
    ax.set_ylabel('Total motion energy')

    majorLocator = MultipleLocator(1)
    ax.xaxis.set_major_locator(majorLocator)

    majorLocator = MultipleLocator(50)
    ax.yaxis.set_major_locator(majorLocator)

    ax.set_xlim(1, 9)
    ax.set_ylim(np.min(mean_me) - 10, np.max(mean_me) + 10)
    sns.despine(offset=5, trim=True)
    plt.tight_layout()

    return speeds, mean_me
示例#2
0
def testFilterLinearCoh(n_iterations=5):
    cohs = np.array([-0.512, -0.256, -0.128, -0.064, -0.032,
                     0, 0.032, 0.064, 0.128, 0.256, 0.512])

    inputs = []
    for coh in cohs:
        for j in xrange(n_iterations):
            seed = [np.random.randint(999), np.random.randint(999)]
            if np.sign(coh) == 1:
                direction = 0
            else:
                direction = 180
            inputs.append(
                gd.generateDots(seed, 0, 0, 5, 60, direction, np.abs(coh), 5))
    pool = multiprocessing.Pool()
    out = pool.map(filterDots, inputs)
    pool.close()

    data = np.array(out)
    summed_me = np.sum(data, axis=1)
    mean_me = np.mean(summed_me.reshape(-1, n_iterations), axis=1)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    colors = b2mpl.get_map('Set1', 'Qualitative', 3).mpl_colors
    ax.add_line(plt.Line2D(cohs, mean_me, color=colors[0]))
    ax.set_xlabel('Motion strength (proportion coh)')
    ax.set_ylabel('Total motion energy')
    ax.set_xlim(-.61, .61)
    ax.set_ylim(np.min(mean_me) * 1.2, np.max(mean_me) * 1.2)
    sns.despine(offset=5, trim=True)
    plt.tight_layout()

    return cohs, mean_me