示例#1
0
    def create_list_from_exp_data(self):
        """
        Creates features for an interval and normalizes them according to
        the maximum among all intervals.
        """
        l_data = []
        l_t = []
        l_exp = []

        for exp_no, folder_name in enumerate(self.train_exp_folders):
            folder_path = os.path.join(self.exp_csv_dir, folder_name)
            l_data.append([])
            l_t.append([])
            l_exp.append([])
            # Each folder contain many files contain a single type of exp (class)
            for file_name in os.listdir(
                    folder_path)[self.SPLIT[0]:self.SPLIT[1]]:
                data, t, exp = read_data_from_file(os.path.join(
                    folder_path, file_name),
                                                   N_CH=8)
                l_data[exp_no].append(np.array(data))
                l_t[exp_no].append(np.array(t))
                l_exp[exp_no].append(np.array(exp))

        return l_data, l_t, l_exp
示例#2
0
    def read_data(self, layout):
        data, t, exp = \
            read_data_from_file(self.path_line_edit.text(), N_CH=self.gv.N_CH)   # clean this part
        for ch in range(self.gv.N_CH):
            fg = self.right_gr.full_graphs[ch]
            slider = self.right_gr.sliders[ch]
            acg = self.left_gr.avg_classif_graphs[ch]
            pgs = self.left_gr.portion_graphs[ch]
            cg = self.left_gr.classif_graphs[ch]

            self.pbar.setValue(int(100 * (ch + 1) / self.gv.N_CH))
            # Right panel
            fg.plot_data(data[ch], color='w')
            slider.setMaximum(len(data[0]))
            # Left panel
            pgs.data = np.array(data[ch])
            pgs.t = np.array(t)
            pgs.plot_data(data[ch], color='g')
            pgs.add_all_experimentation_regions(ch, exp)
            classified_data = self.left_gr.classif_graphs[ch].classify_data(
                data[ch])
            cg.plot_data(classified_data, color='b')

            acg.curve = acg.plot_data(np.zeros(self.gv.emg_signal_len),
                                      color='b')
            acg.classif_region_curve = acg.plot_data(np.zeros(
                self.gv.emg_signal_len),
                                                     color='r')
            acg.combo_box_curve = acg.plot_data(np.zeros(
                self.gv.emg_signal_len),
                                                color='y')
            acg.classified_data = classified_data
            acg.update_pos_and_avg_graph(classif_region_pos=0)