示例#1
0
 def _dbscan_caller(cluster_candidates):
     print("CLUESTER CAND", [p for p in cluster_candidates])
     line_seg_index = BestAvailableClusterCandidateIndex(cluster_candidates, epsilon)
     print("LINE SSEG INDEX", line_seg_index)
     return dbscan(cluster_candidates_index=line_seg_index, #TrajectoryLineSegmentCandidateIndex(cluster_candidates), \
                   min_neighbors=min_neighbors, \
                   cluster_factory=TrajectoryClusterFactory())
示例#2
0
 def _dbscan_caller(cluster_candidates):
     line_seg_index = BestAvailableClusterCandidateIndex(cluster_candidates, epsilon)
     print("return dbscan")
     # print(line_seg_index)
     return dbscan(cluster_candidates_index=line_seg_index, #TrajectoryLineSegmentCandidateIndex(cluster_candidates), \
                   min_neighbors=min_neighbors, \
                   cluster_factory=TrajectoryClusterFactory())
示例#3
0
def run_traclus(trajs, eps, min_lns, min_traj, min_vline, min_prev_dist):

    # Cleaning
    trajs = [[Point(**pt) for pt in traj] for traj in trajs]
    trajs = get_cleaned_trajectories(trajs)
    print('Number of trajectories after clean : {}'.format(len(trajs)))
    trajs = [Trajectory(traj, tid) for tid, traj in enumerate(trajs)]

    # Partitioning
    cluster_candidates_tls = []
    tls_factory = TrajectoryLineSegmentFactory()
    for traj in trajs:
        p_indices = call_partition_trajectory(traj.pts)
        p_pts = filter_by_indices(p_indices, traj.pts)
        traj.p_pts = p_pts
        ls_list = get_ls_list(p_pts)
        if len(ls_list) <= 0:
            raise Exception()
        for ls in ls_list:
            tls = tls_factory.create(ls, traj.tid)
            cluster_candidates_tls.append(tls)
    print('Number of segments (cluster candidates) : {}'.format(
        len(cluster_candidates_tls)))

    # Clustering (DBSCAN)
    tls_index = BestAvailableClusterCandidateIndex(cluster_candidates_tls, eps)
    tcluster_factory = TrajectoryClusterFactory()
    tclusters = dbscan(tls_index, min_lns, tcluster_factory)
    print('Number of clusters : {}'.format(len(tclusters)))

    # Representative trajectory
    rtrajs = []
    for tc in tclusters:
        if tc.get_num_of_trajs() >= min_traj:
            tls_list = tc.get_members()
            r_pts = get_rline_pts(tls_list, min_vline, min_prev_dist)
            rtraj = RepresentativeTrajectory(r_pts, tc.cid)
            rtrajs.append(rtraj)
    print('Number of representative trajectories : {}'.format(len(rtrajs)))

    result = {
        'partitioned_trajectories': trajs,
        'clusters': tclusters,
        'representative_trajectories': rtrajs
    }

    return result
 def test_dbscan(self):
     cluster_factory = ClusterFactory()
     for test_ob in self.test_cases:
         clusters = dbscan(test_ob['test_points'], test_ob['epsilon'], \
                test_ob['min_neighbors'], cluster_factory)
         for expected in test_ob['expected_clusters']:
             self.assertTrue(self.find_single_matching_cluster(expected, clusters), \
                             "couldn't find matching cluster in " + str(test_ob) + \
                             " in clusters: " + str(clusters))
         for point in test_ob['test_points']:
             self.assertTrue(point.is_classified())
         for point in test_ob['expected_noise']:
             self.assertTrue(point.is_noise())
         for single_cluster in clusters:
             for point in single_cluster.members:
                 self.assertEqual(single_cluster, point.cluster)
                 self.assertFalse(point.is_noise())
 def test_dbscan(self):
     cluster_factory = ClusterFactory()
     for test_ob in self.test_cases:
         clusters = dbscan(test_ob['test_points'], test_ob['epsilon'], \
                test_ob['min_neighbors'], cluster_factory)
         for expected in test_ob['expected_clusters']:
             self.assertTrue(self.find_single_matching_cluster(expected, clusters), \
                             "couldn't find matching cluster in " + str(test_ob) + \
                             " in clusters: " + str(clusters))
         for point in test_ob['test_points']:
             self.assertTrue(point.is_classified())
         for point in test_ob['expected_noise']:
             self.assertTrue(point.is_noise())
         for single_cluster in clusters:
             for point in single_cluster.members:
                 self.assertEqual(single_cluster, point.cluster)
                 self.assertFalse(point.is_noise())
示例#6
0
 def _dbscan_caller(cluster_candidates):
     return dbscan(cluster_candidates=cluster_candidates, epsilon=epsilon, min_neighbors=min_neighbors, \
                   cluster_factory=TrajectoryClusterFactory())
示例#7
0
 def _dbscan_caller(cluster_candidates):
     return dbscan(cluster_candidates=cluster_candidates, epsilon=epsilon, min_neighbors=min_neighbors, \
                   cluster_factory=TrajectoryClusterFactory())
示例#8
0
 def _dbscan_caller(cluster_candidates):
     line_seg_index = BestAvailableClusterCandidateIndex(cluster_candidates, epsilon)
     return dbscan(cluster_candidates_index=line_seg_index, #TrajectoryLineSegmentCandidateIndex(cluster_candidates), \
                   min_neighbors=min_neighbors, \
                   cluster_factory=TrajectoryClusterFactory())
示例#9
0
 def dbscan_caller(cluster_candidates):
     line_seg_index = TrajectoryLineSegmentCandidateIndex(
         cluster_candidates, epsilon)
     return dbscan(cluster_candidates_index=line_seg_index, #TrajectoryLineSegmentCandidateIndex(cluster_candidates), \
                   min_neighbors=min_neighbors, \
                   cluster_factory=TrajectoryClusterFactory())