def perfect_1d_plot(dirlist,attribs,xattr="psi",normname="norms.namelist",speciesname="species",psiN_to_psiname="psiAHat.h5",global_term_multiplier_name="globalTermMultiplier.h5",cm=cm.rainbow,lg=True,markers=None,linestyles=None,xlims=None,same_plot=False,outputname="default",ylabels=None,label_all=False,global_ylabel="",sort_species=True,first=["D","He"],last=["e"],generic_labels=True,label_dict={"D":"i","He":"z","N":"z","e":"e"},vlines=None,hlines=None,share_scale=[],interactive=False): #dirlist: list of simulation directories #attribs: list of fields to plot from simulation #speciesname: species filename in the simuldir #normname: norm filename in the simuldir #lg: controls whether to interpret nearby simulations as being paired if type(attribs) is not list: attribs=[attribs] if ylabels is not None: if type(ylabels) is not list: ylabels=[ylabels]*len(attribs) else: if len(ylabels) != len(attribs): print "p_1d_plot: error: ylabels not the same size as attribs" exit(1) else: ylabels=['']*len(attribs) normlist=[x + "/" + normname for x in dirlist] specieslist=[x + "/" + speciesname for x in dirlist] psiN_to_psiList=[x + "/" + psiN_to_psiname for x in dirlist] global_term_multiplierList=[x + "/" + global_term_multiplier_name for x in dirlist] simulList=perfect_simulations_from_dirs(dirlist,normlist,specieslist,psiN_to_psiList,global_term_multiplierList) if markers == None: markers=['']*len(simulList) #some logic to differentiate between species independent #and species quantities further down will fail if there are simulations #one species (which you really shouldn't do due to quasi-neutrality!!) num_species_array=numpy.array([len(simul.species) for simul in simulList]) one_species_list=numpy.where(num_species_array<=1) if len(num_species_array[one_species_list])>0: print "p_1d_plot: warning: there are simulations with one (or) less species! Logic to determine whether attribute is a species property will not work." if generic_labels: for simul in simulList: simul.species_list=generic_species_labels(simul.species_list,label_dict) first=generic_species_labels(first,label_dict) last=generic_species_labels(last,label_dict) species_set=set([]) for simul in simulList: species_set = species_set | set(simul.species) #print gridspec i=-1 psp_lists=[] #list of lists of perfect subplot object gridspec_list=[] colors=cm(numpy.linspace(0,1,len(simulList))) #assign colors to simulations all_linecolors=[] color_index=0 local=[simul.local for simul in simulList] noddpsi=[simul.no_ddpsi for simul in simulList] if lg: colors=cm(numpy.linspace(0,1,len(simulList)-sum(local)-sum(noddpsi))) if sum(local)>0: #if we have local simulations, increment color after them for loc in local: all_linecolors.append(colors[color_index]) if loc == True: color_index=color_index+1 elif sum(noddpsi)>0: #otherwise, increment color after noddpsi simulation for nd in noddpsi: all_linecolors.append(colors[color_index]) if nd == True: color_index=color_index+1 else: #else, always increment all_linecolors=cm(numpy.linspace(0,1,len(simulList))) else: # force always increment behavior all_linecolors=cm(numpy.linspace(0,1,len(simulList))) if linestyles == None: linestyles=[] #linestyles generated from local or global for n,l in zip(noddpsi,local): # local overrides noddpsi in code as well if l: linestyles=linestyles+["dashed"] elif n: linestyles=linestyles+["dashdot"] else: linestyles=linestyles+["solid"] for i_a,attrib in enumerate(attribs): psp_list=[] #check whether attribute is species dependent #it will be assumed to be if the lenght along the 1 axis #is equal to the number of species in a simulation for all simulations #at least as long as there is more than one species in the simulation. attrib_sp_dep = is_attribute_species_dependent(simulList,attrib) #we will assign data to the following attribute related groups attrib_groupname=attrib if attrib_sp_dep: species_attrib_groupname="species_dependent" else: species_attrib_groupname="species_independent" if same_plot: if i_a == len(attribs)-1: perhaps_last=True else: perhaps_last=False else: perhaps_last=True if sort_species: species_set=sort_species_list(list(species_set),first,last) if attrib_sp_dep: for i_sp,s in enumerate(species_set): i=i+1 #data is taken for a given species for all simulations #index of species in simulation given by index to index index=[[ind for ind,spec in enumerate(simul.species) if spec==s] for simul in simulList] if all(len(ind)<=1 for ind in index): data=[getattr(simul,attrib)[:,index[i_si][0]] for i_si,simul in enumerate(simulList) if s in simul.species] else: print "p_1d_plot: warning: more than one of the same species in the simulation. Will add contributions." data=[numpy.sum(getattr(simul,attrib)[:,index[i_si]],axis=1) for i_si,simul in enumerate(simulList) if s in simul.species] if xattr=="theta": x_scale=1/numpy.pi else: x_scale=1 if xattr != None: x=[getattr(simul,xattr)*x_scale for simul in simulList if s in simul.species] else: # If xattrib is None, we plot against the index of the data # This probably will not work if we are not plotting against # the first index of data x=[numpy.array(range(len(getattr(simul,attrib)))) for simul in simulList if s in simul.species] if xlims == None: # min to max among all the simulations xlims = [numpy.min(x),numpy.max(x)] linecolors=[all_linecolors[i_si] for i_si,simul in enumerate(simulList) if s in simul.species] coordinates=(i,0) if perhaps_last and (i_sp == len(species_set) - 1): last_groupname="last" gridspec_list.append([i+1,1]) else: last_groupname="not_last" psp_list.append(perfect_subplot(data,x,subplot_coordinates=coordinates,groups=[s,attrib_groupname,species_attrib_groupname,last_groupname],linestyles=linestyles,colors=linecolors,markers=markers)) #yaxis_label=ylabels[i_a] else: i=i+1 if perhaps_last: last_groupname="last" gridspec_list.append([i+1,1]) else: last_groupname="not_last" #species independent plot data=[getattr(simul,attrib) for simul in simulList] x=[getattr(simul,xattr) for simul in simulList] linecolors=all_linecolors coordinates=(i,0) psp_list.append(perfect_subplot(data,x,subplot_coordinates=coordinates,groups=[attrib_groupname,species_attrib_groupname,last_groupname],linestyles=linestyles,colors=linecolors,markers=markers)) #yaxis_label=ylabels[i_a] psp_lists.append(psp_list) if not same_plot: i=-1 #merge the psp_lists if everything is supposed to go in the same plot if same_plot: final_psp_lists=[] for psp_list in psp_lists: final_psp_lists = final_psp_lists + psp_list psp_lists=[final_psp_lists] for i_li,psp_list in enumerate(psp_lists): for psp in psp_list: print psp.groups psp.xlims=xlims psp.data=psp.data_inrange() psp.x=psp.x_inrange() if same_plot: attrib_groups=[perfect_subplot_group(psp_list,groups=[a]) for a in attribs] for ylabel,attrib_group in zip(ylabels,attrib_groups): if label_all: attrib_group.setattrs("yaxis_label",ylabel) else: attrib_group.set_middle_ylabel(ylabel) else: attrib_groups=[perfect_subplot_group(psp_list,groups=[a]) for a in [attribs[i_li]]] for ylabel,attrib_group in zip([ylabels[i_li]],attrib_groups): if label_all: attrib_group.setattrs("yaxis_label",ylabel) else: attrib_group.set_middle_ylabel(ylabel) if len(share_scale)>0: share_scale_group=perfect_subplot_group(psp_list,groups=share_scale,logic="or") share_scale_group.setattrs("ylims",[share_scale_group.get_min("data",margin=0.1),share_scale_group.get_max("data",margin=0.1)]) species_groups=[perfect_subplot_group(psp_list,groups=[s]) for s in species_set] species_indep_groups=perfect_subplot_group(psp_list,groups=["species_independent"]) local_group = perfect_subplot_group(psp_list,groups=["local"]) global_group = perfect_subplot_group(psp_list,groups=["global"]) last_group = perfect_subplot_group(psp_list,groups=["last"]) all_group=perfect_subplot_group(psp_list,groups='',get_all=True) for species_group,s in zip(species_groups,species_set): species_group.setattrs("title",s) for attrib_group in attrib_groups: this_species_groups=[perfect_subplot_group(attrib_group.p_subplot_list,groups=[s]) for s in species_set] for this_species_group in this_species_groups: if len(this_species_group.p_subplot_list)>0: this_species_group.setattrs("ylims",[this_species_group.get_min("data",margin=0.1),this_species_group.get_max("data",margin=0.1)]) #print [this_species_group.get_min("data",margin=0.1),this_species_group.get_max("data",margin=0.1)] this_species_indep_group=perfect_subplot_group(attrib_group.p_subplot_list,groups=["species_independent"]) if len(this_species_indep_group.p_subplot_list)>0: this_species_indep_group.setattrs("ylims",[this_species_indep_group.get_min("data",margin=0.1),this_species_indep_group.get_max("data",margin=0.1)]) this_share_scale_group=perfect_subplot_group(attrib_group.p_subplot_list,groups=share_scale,logic="or") if len(this_share_scale_group.p_subplot_list)>0: this_share_scale_group.setattrs("ylims",[this_share_scale_group.get_min("data",margin=0.1),this_share_scale_group.get_max("data",margin=0.1)]) all_group.setattrs("show_yaxis_ticklabel",True) all_group.setattrs("vlines",vlines) all_group.setattrs("hlines",hlines) last_group.setattrs("show_xaxis_ticklabel",True) #print gridspec_list[i_li] if xattr=="psi": global_xlabel=r"$\psi_N$" elif xattr=="theta": global_xlabel=r"$\theta/\pi$" elif xattr=="sqrtpsi": global_xlabel=r"$\sqrt{\psi_N}$" elif xattr=="psiOverOrbitWidth": global_xlabel=r"$\sqrt{\psi_N}$" elif xattr=="actual_psi": global_xlabel=r"$\hat{\psi}$" elif xattr=="actual_psiN": global_xlabel=r"$\psi_N$" elif xattr=="psi_index": global_xlabel=r"$i_\psi$" elif xattr==None: global_xlabel=r"$i$" perfect_visualizer(psp_list,gridspec_list[i_li],global_xlabel=global_xlabel,dimensions=1,global_ylabel=global_ylabel) if same_plot: plt.savefig(outputname+".pdf") else: plt.savefig(attribs[i_li]+".pdf") if interactive: #dangerous, since it will (for some reason) be executed after all 1d_plot calls and show everything plotted in the given script. datacursor(display='multiple', draggable=True) plt.show()
def perfect_2d_plot(dirlist,attribs,xattr="psi",yattr="theta",normname="norms.namelist",speciesname="species",psiN_to_psiname="psiAHat.h5",cm=cm.rainbow,lg=True,xlims=[90,100],ylims=[0,2],species=True,sort_species=True,first=["D","He"],last=["e"],generic_labels=True,label_dict={"D":"i","He":"z","N":"z","e":"e"},vlines=None,hlines=None,share_scale=[],skip_species = [],simulList=None): #dirlist: list of simulation directories #attribs: list of fields to plot from simulation #speciesname: species filename in the simuldir #normname: norm filename in the simuldir #lg: controls whether to interpret nearby simulations as being paired if type(attribs) is not list: attribs=[attribs] if simulList == None: normlist=[x + "/" + normname for x in dirlist] specieslist=[x + "/" + speciesname for x in dirlist] psiN_to_psiList=[x + "/" + psiN_to_psiname for x in dirlist] simulList=perfect_simulations_from_dirs(dirlist,normlist,specieslist,psiN_to_psiList) else: "p_2d_plot: simulList specified externally, ignoring dirlist, etc." #if we translate species labels to generic ion and impurity labels #we still need to use original species for sorting preferences if generic_labels: for simul in simulList: simul.species_list=generic_species_labels(simul.species_list,label_dict) first=generic_species_labels(first,label_dict) last=generic_species_labels(last,label_dict) #get the total list of species found in each simulation species_set=set([]) for simul in simulList: # exclude species that are in the skip list #nonexcluded = set(simul.species).difference(skip_species) nonexcluded = [s for s in simul.species if s not in skip_species] simul.species_list = nonexcluded # add nonexcluded species to total species set species_set = species_set | set(simul.species) # sort species according to preferences if sort_species: species_set=sort_species_list(list(species_set),first,last) print species_set for attrib in attribs: psp_list=[] #list of perfect subplot objects attrib_sp_dep = is_attribute_species_dependent(simulList,attrib) #we will assign data to the following attribute related groups attrib_groupname=attrib if attrib_sp_dep and species: species_attrib_groupname="species_dependent" this_species_set=species_set gridspec=[len(simulList),len(species_set)] else: species_attrib_groupname="species_independent" this_species_set=set(['']) gridspec=[len(simulList),1] for i,simul in enumerate(simulList): data0=getattr(simul,attrib) #need to split this into species data #i_s will be coordinate of plot for i_s,s in enumerate(this_species_set): if attrib_sp_dep: index=[i2 for i2,s2 in enumerate(simul.species) if s2 == s] if len(index)==0: #no data for this species in this simulation. Set data to zeros data=numpy.zeros(data0[:,:,0].shape) elif len(index)==1: data=data0[:,:,index[0]] else: print "perfect_2d_plot: warning: more than one of the same species in the simulation. Will add contributions, but this is untested." data=numpy.sum(data0[:,:,index],axis=2) else: data=data0 subplot_coordinates=(i,i_s) #print subplot_coordinates if i == 0: show_zaxis_ticklabel=True show_xaxis_ticklabel=False title=s else: show_zaxis_ticklabel=False title='' if i == len(simulList)-1: show_xaxis_ticklabel=True else: show_xaxis_ticklabel=False if i_s == 0: show_yaxis_ticklabel=True else: show_yaxis_ticklabel=False #print simul.local if simul.local: gl_grp="local" else: gl_grp="global" if (yattr == "theta") or (yattr == "theta_shifted"): y_scale = 1/numpy.pi else: y_scale=1 if (xattr == "theta") or (xattr == "theta_shifted"): x_scale = 1/numpy.pi elif (xattr == "psi") or (xattr == "actual_psiN"): x_scale=100 else: x_scale=1 if xattr is not "psio": x = getattr(simul,xattr)*x_scale else: print "WARNING: orbit width uses hardcoded index for deuterium and pedestal start and stop values!" vlines2 = [0.94927395957025573,0.97463697978512787] iD = 0 ped_start_index=get_index_range(simul.actual_psiN,[vlines2[0],vlines2[0]])[1] ped_stop_index=get_index_range(simul.actual_psiN,[vlines2[1],vlines2[1]])[1] ow_start=simul.orbit_width[ped_start_index,iD] ow_stop=simul.orbit_width[ped_stop_index,iD] x = (simul.actual_psiN-vlines2[1])/simul.orbit_width[:,iD] vlines=[(vlines2[0]-vlines2[1])/ow_start,(vlines2[1]-vlines2[1])/ow_stop] y = getattr(simul,yattr)*y_scale psp_list.append(perfect_subplot(data,x=x,y=y,subplot_coordinates=subplot_coordinates,show_zaxis_ticklabel=show_zaxis_ticklabel,show_yaxis_ticklabel=show_yaxis_ticklabel,show_xaxis_ticklabel=show_xaxis_ticklabel,title=title,groups=[s,"sim"+str(i),gl_grp,"pair"+str(i/2),species_attrib_groupname],dimensions=2)) #end simulList loop for psp in psp_list: print psp.groups species_groups=[perfect_subplot_group(psp_list,groups=[s,"species_dependent"],logic="and") for s in species_set if len(perfect_subplot_group(psp_list,groups=[s,"species_dependent"],logic="and").p_subplot_list)>0] nospecies_group=perfect_subplot_group(psp_list,groups=["species_independent"]) sim_groups = [perfect_subplot_group(psp_list,groups=["sim"+str(i)]) for i in range(len(simulList))] pair_groups = [perfect_subplot_group(psp_list,groups=["pair"+str(i)]) for i in range(len(simulList)/2)] local_group = perfect_subplot_group(psp_list,groups=["local"]) global_group = perfect_subplot_group(psp_list,groups=["global"]) all_group=perfect_subplot_group(psp_list,groups='',get_all=True) share_scale_group=perfect_subplot_group(psp_list,groups=share_scale,logic="or") if lg==False: color=iter(cm(numpy.linspace(0,1,len(simulList)))) for sim_group in sim_groups: c=next(color) sim_group.setattrs("border_color",c) else: color=iter(cm(numpy.linspace(0,1,len(pair_groups)))) for pair_group in pair_groups: c=next(color) pair_group.setattrs("border_color",c) local_group.setattrs("border_linestyle","dashed") all_group.setattrs("xlims",xlims) #all_group.setattrs("ylims",[all_group.get_min("y",xlim=False,ylim=False),all_group.get_max("y",xlim=False,ylim=False)]) all_group.setattrs("ylims",ylims) all_group.setattrs("vlines",vlines) all_group.setattrs("hlines",hlines) for species_group in species_groups: species_group.setattrs("zlims",[species_group.get_min("data"),species_group.get_max("data")]) print [species_group.get_min("data"),species_group.get_max("data")] if len(share_scale_group.p_subplot_list)>0: share_scale_group.setattrs("zlims",[share_scale_group.get_min("data"),share_scale_group.get_max("data")]) if len(nospecies_group.p_subplot_list)>0: nospecies_group.setattrs("zlims",[nospecies_group.get_min("data"),nospecies_group.get_max("data")]) for i,sim_group in enumerate(sim_groups): if i != 0: sim_group.setattrs("show_zaxis",False) if xattr is not "psio": global_xlabel=r"$100\psi_N$" else: global_xlabel=r"$\psi^\mathrm{o}$" perfect_visualizer(psp_list,gridspec,global_xlabel=global_xlabel,dimensions=2,global_ylabel=r"$\theta/\pi$") plt.savefig(attrib+'.pdf')
def perfect_0d_plot(dirlist,yattribs,xattribs,normname="norms.namelist",speciesname="species",psiN_to_psiname="psiAHat.h5",cm=cm.rainbow,lg=True,markers=None,linestyles=None,same_plot=False,outputname="default",xlabels=None,ylabels=None,label_all=False,global_xlabel="",global_ylabel="",sort_species=True,first=["D","He"],last=["e"],generic_labels=True,label_dict={"D":"i","He":"z","N":"z","e":"e"},vlines=None,hlines=None,share_scale=[],interactive=False): #dirlist: list of simulation directories #attribs: list of fields to plot from simulation #speciesname: species filename in the simuldir #normname: norm filename in the simuldir #lg: controls whether to interpret nearby simulations as being paired if type(yattribs) is not list: yattribs=[yattribs] if type(xattribs) is not list: xattribs=[xattribs] if ylabels is not None: if type(ylabels) is not list: ylabels=[ylabels]*len(yattribs) else: if len(ylabels) != len(yattribs): print "p_0d_plot: error: ylabels not the same size as attribs" exit(1) else: ylabels=['']*len(yattribs) if xlabels is not None: if type(xlabels) is not list: xlabels=[xlabels]*len(xattribs) else: if len(xlabels) != len(xattribs): print "p_0d_plot: error: ylabels not the same size as attribs" exit(1) else: xlabels=['']*len(xattribs) normlist=[x + "/" + normname for x in dirlist] specieslist=[x + "/" + speciesname for x in dirlist] psiN_to_psiList=[x + "/" + psiN_to_psiname for x in dirlist] simulList=perfect_simulations_from_dirs(dirlist,normlist,specieslist,psiN_to_psiList) if markers == None: markers=['']*len(simulList) num_species_array=numpy.array([len(simul.species) for simul in simulList]) one_species_list=numpy.where(num_species_array<=1) if len(num_species_array[one_species_list])>0: print "p_0d_plot: warning: there are simulations with one (or) less species! Logic to determine whether attribute is a species property will not work." if generic_labels: for simul in simulList: simul.species_list=generic_species_labels(simul.species_list,label_dict) first=generic_species_labels(first,label_dict) last=generic_species_labels(last,label_dict) species_set=set([]) for simul in simulList: species_set = species_set | set(simul.species) #print gridspec i=-1 psp_lists=[] #list of lists of perfect subplot object gridspec_list=[] colors=cm(numpy.linspace(0,1,len(simulList))) #assign colors to simulations all_linecolors=[] color_index=0 local=[simul.local for simul in simulList] noddpsi=[simul.no_ddpsi for simul in simulList] if lg: colors=cm(numpy.linspace(0,1,len(simulList)-sum(local)-sum(noddpsi))) if sum(local)>0: #if we have local simulations, increment color after them for loc in local: all_linecolors.append(colors[color_index]) if loc == True: color_index=color_index+1 elif sum(noddpsi)>0: #otherwise, increment color after noddpsi simulation for nd in noddpsi: all_linecolors.append(colors[color_index]) if nd == True: color_index=color_index+1 else: #else, always increment all_linecolors=cm(numpy.linspace(0,1,len(simulList))) else: # force always increment behavior all_linecolors=cm(numpy.linspace(0,1,len(simulList))) if linestyles == None: linestyles=[] #linestyles generated from local or global for n,l in zip(noddpsi,local): # local overrides noddpsi in code as well if l: linestyles=linestyles+["dashed"] elif n: linestyles=linestyles+["dashdot"] else: linestyles=linestyles+["solid"] for i_a,(xattrib,yattrib) in enumerate(zip(xattribs,yattribs)): psp_list=[] yattrib_sp_dep = is_attribute_species_dependent(simulList,yattrib) #we will assign data to the following attribute related groups yattrib_groupname=yattrib if yattrib_sp_dep: species_attrib_groupname="species_dependent" else: species_attrib_groupname="species_independent" if same_plot: if i_a == len(yattribs)-1: perhaps_last=True else: perhaps_last=False else: perhaps_last=True if sort_species: species_set=sort_species_list(list(species_set),first,last) if yattrib_sp_dep: for i_sp,s in enumerate(species_set): i=i+1 #data is taken for a given species for all simulations #index of species in simulation given by index to index index=[[ind for ind,spec in enumerate(simul.species) if spec==s] for simul in simulList] if all(len(ind)<=1 for ind in index): ydata=[getattr(simul,yattrib)[index[i_si][0]] for i_si,simul in enumerate(simulList) if s in simul.species] else: print "p_0d_plot: warning: more than one of the same species in the simulation. Will add contributions." ydata=[numpy.sum(getattr(simul,yattrib)[index[i_si]],axis=1) for i_si,simul in enumerate(simulList) if s in simul.species] ydata = numpy.array(ydata) xdata=[getattr(simul,xattrib) for simul in simulList if s in simul.species] xdata = numpy.array(xdata) print repr(xdata) print repr(ydata) linecolors=[all_linecolors[i_si] for i_si,simul in enumerate(simulList) if s in simul.species] coordinates=(i,0) if perhaps_last and (i_sp == len(species_set) - 1): last_groupname="last" gridspec_list.append([i+1,1]) else: last_groupname="not_last" psp_list.append(perfect_subplot(ydata,xdata,subplot_coordinates=coordinates,groups=[s,yattrib_groupname,species_attrib_groupname,last_groupname],linestyles=linestyles,colors=linecolors,markers=markers)) else: i=i+1 if perhaps_last: last_groupname="last" gridspec_list.append([i+1,1]) else: last_groupname="not_last" #species independent plot ydata=numpy.array([getattr(simul,yattrib) for simul in simulList]) xdata=numpy.array([getattr(simul,xattrib) for simul in simulList]) linecolors=all_linecolors coordinates=(i,0) psp_list.append(perfect_subplot(ydata,xdata,subplot_coordinates=coordinates,groups=[yattrib_groupname,species_attrib_groupname,last_groupname],linestyles=linestyles,colors=linecolors,markers=markers,dimensions=1)) psp_lists.append(psp_list) if not same_plot: i=-1 #merge the psp_lists if everything is supposed to go in the same plot if same_plot: final_psp_lists=[] for psp_list in psp_lists: final_psp_lists = final_psp_lists + psp_list psp_lists=[final_psp_lists] for i_li,psp_list in enumerate(psp_lists): for psp in psp_list: print psp.groups xlims = [numpy.min(xdata),numpy.max(xdata)] psp.xlims=xlims psp.data=psp.data_inrange() psp.x=psp.x_inrange() if same_plot: attrib_groups=[perfect_subplot_group(psp_list,groups=[a]) for a in yattribs] for ylabel,attrib_group in zip(ylabels,attrib_groups): if label_all: attrib_group.setattrs("yaxis_label",ylabel) else: attrib_group.set_middle_ylabel(ylabel) else: attrib_groups=[perfect_subplot_group(psp_list,groups=[a]) for a in [attribs[i_li]]] for ylabel,attrib_group in zip([ylabels[i_li]],attrib_groups): if label_all: attrib_group.setattrs("yaxis_label",ylabel) else: attrib_group.set_middle_ylabel(ylabel) if len(share_scale)>0: share_scale_group=perfect_subplot_group(psp_list,groups=share_scale,logic="or") share_scale_group.setattrs("ylims",[share_scale_group.get_min("data",margin=0.1),share_scale_group.get_max("data",margin=0.1)]) species_groups=[perfect_subplot_group(psp_list,groups=[s]) for s in species_set] species_indep_groups=perfect_subplot_group(psp_list,groups=["species_independent"]) local_group = perfect_subplot_group(psp_list,groups=["local"]) global_group = perfect_subplot_group(psp_list,groups=["global"]) last_group = perfect_subplot_group(psp_list,groups=["last"]) all_group=perfect_subplot_group(psp_list,groups='',get_all=True) for species_group,s in zip(species_groups,species_set): species_group.setattrs("title",s) for attrib_group in attrib_groups: this_species_groups=[perfect_subplot_group(attrib_group.p_subplot_list,groups=[s]) for s in species_set] for this_species_group in this_species_groups: if len(this_species_group.p_subplot_list)>0: this_species_group.setattrs("ylims",[this_species_group.get_min("data",margin=0.1),this_species_group.get_max("data",margin=0.1)]) #print [this_species_group.get_min("data",margin=0.1),this_species_group.get_max("data",margin=0.1)] this_species_indep_group=perfect_subplot_group(attrib_group.p_subplot_list,groups=["species_independent"]) if len(this_species_indep_group.p_subplot_list)>0: this_species_indep_group.setattrs("ylims",[this_species_indep_group.get_min("data",margin=0.1),this_species_indep_group.get_max("data",margin=0.1)]) this_share_scale_group=perfect_subplot_group(attrib_group.p_subplot_list,groups=share_scale,logic="or") if len(this_share_scale_group.p_subplot_list)>0: this_share_scale_group.setattrs("ylims",[this_share_scale_group.get_min("data",margin=0.1),this_share_scale_group.get_max("data",margin=0.1)]) all_group.setattrs("show_yaxis_ticklabel",True) all_group.setattrs("vlines",vlines) all_group.setattrs("hlines",hlines) last_group.setattrs("show_xaxis_ticklabel",True) perfect_visualizer(psp_list,gridspec_list[i_li],global_xlabel=global_xlabel,dimensions=1,global_ylabel=global_ylabel) if same_plot: plt.savefig(outputname+".pdf") else: plt.savefig(attribs[i_li]+".pdf") if interactive: #dangerous, since it will (for some reason) be executed after all 0d_plot calls and show everything plotted in the given script. datacursor(display='multiple', draggable=True) plt.show()