inp, outp = sys.argv[1:3] if not os.path.isdir(os.path.dirname(outp)): raise SystemExit("Error: The output directory must be different than input. Create a new folder and try again") if len(sys.argv) > 3: keep_words = int(sys.argv[3]) else: keep_words = DEFAULT_DICT_SIZE online = 'online' in program lemmatize = 'lemma' in program debug = 'nodebug' not in program if online: dictionary = HashDictionary(id_range=keep_words, debug=debug) dictionary.allow_update = True wiki = WikiCorpus(inp, lemmatize=lemmatize, dictionary=dictionary) MmCorpus.serialize(outp + '_bow.mm', wiki, progress_cnt=10000, metadata=True) dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=DEFAULT_DICT_SIZE) dictionary.save_as_text(outp + '_wordids.txt.bz2') wiki.save(outp + '_corpus.pkl.bz2') dictionary.allow_update = False else: wiki = WikiCorpus(inp, lemmatize=lemmatize) wiki.dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=DEFAULT_DICT_SIZE) MmCorpus.serialize(outp + '_bow.mm', wiki, progress_cnt=10000, metadata=True) wiki.dictionary.save_as_text(outp + '_wordids.txt.bz2') dictionary = Dictionary.load_from_text(outp + '_wordids.txt.bz2') del wiki mm = MmCorpus(outp + '_bow.mm')
# check and process input arguments if len(sys.argv) < 3: print(globals()['__doc__'] % locals()) sys.exit(1) inp, outp = sys.argv[1:3] if len(sys.argv) > 3: keep_words = int(sys.argv[3]) else: keep_words = DEFAULT_DICT_SIZE online = 'online' in program lemmatize = 'lemma' in program debug = 'nodebug' not in program if online: dictionary = HashDictionary(id_range=keep_words, debug=debug) dictionary.allow_update = True # start collecting document frequencies wiki = WikiCorpus(inp, lemmatize=lemmatize, dictionary=dictionary) MmCorpus.serialize(outp + '_bow.mm', wiki, progress_cnt=10000) # ~4h on my macbook pro without lemmatization, 3.1m articles (august 2012) # with HashDictionary, the token->id mapping is only fully instantiated now, after `serialize` dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=DEFAULT_DICT_SIZE) dictionary.save_as_text(outp + '_wordids.txt.bz2') wiki.save(outp + '_corpus.pkl.bz2') dictionary.allow_update = False else: wiki = WikiCorpus(inp, lemmatize=lemmatize) # takes about 9h on a macbook pro, for 3.5m articles (june 2011) mywiki = myWikiCorpus(inp, lemmatize=lemmatize) # only keep the most frequent words (out of total ~8.2m unique tokens) wiki.dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=DEFAULT_DICT_SIZE) # save dictionary and bag-of-words (term-document frequency matrix) MmCorpus.serialize(outp + '_bow.mm', wiki, progress_cnt=10000) # another ~9h MmCorpus.serialize(outp + '_bowm.mm', mywiki, progress_cnt=10000) # another ~9h
def process_corpus(input_filename=WIKI_CORPUS, output_dir=GENSIM_DIR, online=False, to_lemmatize=LEMMING, debug=True): program = 'GensimWikiCorpus' logger = logging.getLogger(program) inp = input_filename # twice because model will be saved into directory/prefixfilenames outp = os.path.join(output_dir, WIKI_STATS + '/' + WIKI_STATS) if not os.path.isdir(os.path.dirname(outp)): os.makedirs(outp) keep_words = DEFAULT_DICT_SIZE if online: dictionary = HashDictionary(id_range=keep_words, debug=debug) dictionary.allow_update = True # start collecting document frequencies wiki = JsonWikiCorpus(inp, to_lemmatize=to_lemmatize, dictionary=dictionary) MmCorpus.serialize( outp + '_bow.mm', wiki, progress_cnt=10000 ) # ~4h on my macbook pro without lemmatization, 3.1m articles (august 2012) # with HashDictionary, the token->id mapping is only fully instantiated now, after `serialize` dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=DEFAULT_DICT_SIZE) dictionary.save_as_text(outp + '_wordids.txt.bz2') wiki.save(outp + '_corpus.pkl.bz2') dictionary.allow_update = False else: wiki = JsonWikiCorpus( inp, to_lemmatize=to_lemmatize ) # takes about 9h on a macbook pro, for 3.5m articles (june 2011) # only keep the most frequent words (out of total ~8.2m unique tokens) wiki.dictionary.filter_extremes(no_below=20, no_above=0.1, keep_n=DEFAULT_DICT_SIZE) # save dictionary and bag-of-words (term-document frequency matrix) MmCorpus.serialize(outp + '_bow.mm', wiki, progress_cnt=10000) # another ~9h wiki.dictionary.save_as_text(outp + '_wordids.txt.bz2') # load back the id->word mapping directly from file # this seems to save more memory, compared to keeping the wiki.dictionary object from above dictionary = Dictionary.load_from_text(outp + '_wordids.txt.bz2') del wiki # initialize corpus reader and word->id mapping mm = MmCorpus(outp + '_bow.mm') # build tfidf, ~50min tfidf = TfidfModel(mm, id2word=dictionary, normalize=True) tfidf.save(outp + '.tfidf_model') # save tfidf vectors in matrix market format # ~4h; result file is 15GB! bzip2'ed down to 4.5GB MmCorpus.serialize(outp + '_tfidf.mm', tfidf[mm], progress_cnt=10000) logger.info("finished running %s" % program)