# check and process input arguments if len(sys.argv) < 3: print(globals()['__doc__'] % locals()) sys.exit(1) language = sys.argv[1] method = sys.argv[2].strip().lower() logging.info("loading corpus mappings") config = dmlcorpus.DmlConfig('%s_%s' % (gensim_build.PREFIX, language), resultDir=gensim_build.RESULT_DIR, acceptLangs=[language]) logging.info("loading word id mapping from %s" % config.resultFile('wordids.txt')) id2word = dmlcorpus.DmlCorpus.loadDictionary(config.resultFile('wordids.txt')) logging.info("loaded %i word ids" % len(id2word)) corpus = dmlcorpus.DmlCorpus.load(config.resultFile('.pkl')) input = MmCorpus(config.resultFile('_%s.mm' % method)) assert len(input) == len(corpus), "corpus size mismatch (%i vs %i): run ./gensim_genmodel.py again" % (len(input), len(corpus)) # initialize structure for similarity queries if method == 'lsi' or method == 'rp': # for these methods, use dense vectors index = MatrixSimilarity(input, numBest=MAX_SIMILAR + 1, numFeatures=input.numTerms) else: index = SparseMatrixSimilarity(input, numBest=MAX_SIMILAR + 1) index.normalize = False # do not normalize query vectors during similarity queries (the index is already built normalized, so it would be a no-op) generateSimilar(corpus, index, method) # for each document, print MAX_SIMILAR nearest documents to a xml file, in dml-cz specific format logging.info("finished running %s" % program)
method = sys.argv[2].strip().lower() logging.info("loading corpus mappings") config = dmlcorpus.DmlConfig('%s_%s' % (gensim_build.PREFIX, language), resultDir=gensim_build.RESULT_DIR, acceptLangs=[language]) logging.info("loading word id mapping from %s", config.resultFile('wordids.txt')) id2word = dmlcorpus.DmlCorpus.loadDictionary( config.resultFile('wordids.txt')) logging.info("loaded %i word ids", len(id2word)) corpus = dmlcorpus.DmlCorpus.load(config.resultFile('.pkl')) input = MmCorpus(config.resultFile('_%s.mm' % method)) assert len(input) == len(corpus), \ "corpus size mismatch (%i vs %i): run ./gensim_genmodel.py again" % (len(input), len(corpus)) # initialize structure for similarity queries if method == 'lsi' or method == 'rp': # for these methods, use dense vectors index = MatrixSimilarity(input, num_best=MAX_SIMILAR + 1, num_features=input.numTerms) else: index = SparseMatrixSimilarity(input, num_best=MAX_SIMILAR + 1) index.normalize = False generateSimilar(corpus, index, method) logging.info("finished running %s", program)
resultDir=gensim_build.RESULT_DIR, acceptLangs=[language]) logging.info("loading word id mapping from %s" % config.resultFile('wordids.txt')) id2word = dmlcorpus.DmlCorpus.loadDictionary( config.resultFile('wordids.txt')) logging.info("loaded %i word ids" % len(id2word)) corpus = dmlcorpus.DmlCorpus.load(config.resultFile('.pkl')) input = MmCorpus(config.resultFile('_%s.mm' % method)) assert len(input) == len( corpus ), "corpus size mismatch (%i vs %i): run ./gensim_genmodel.py again" % ( len(input), len(corpus)) # initialize structure for similarity queries if method == 'lsi' or method == 'rp': # for these methods, use dense vectors index = MatrixSimilarity(input, numBest=MAX_SIMILAR + 1, numFeatures=input.numTerms) else: index = SparseMatrixSimilarity(input, numBest=MAX_SIMILAR + 1) index.normalize = False # do not normalize query vectors during similarity queries (the index is already built normalized, so it would be a no-op) generateSimilar( corpus, index, method ) # for each document, print MAX_SIMILAR nearest documents to a xml file, in dml-cz specific format logging.info("finished running %s" % program)
# check and process input arguments if len(sys.argv) < 3: print(globals()['__doc__'] % locals()) sys.exit(1) language = sys.argv[1] method = sys.argv[2].strip().lower() logging.info("loading corpus mappings") config = dmlcorpus.DmlConfig('%s_%s' % (gensim_build.PREFIX, language), resultDir=gensim_build.RESULT_DIR, acceptLangs=[language]) logging.info("loading word id mapping from %s", config.resultFile('wordids.txt')) id2word = dmlcorpus.DmlCorpus.loadDictionary(config.resultFile('wordids.txt')) logging.info("loaded %i word ids", len(id2word)) corpus = dmlcorpus.DmlCorpus.load(config.resultFile('.pkl')) input = MmCorpus(config.resultFile('_%s.mm' % method)) assert len(input) == len(corpus), \ "corpus size mismatch (%i vs %i): run ./gensim_genmodel.py again" % (len(input), len(corpus)) # initialize structure for similarity queries if method == 'lsi' or method == 'rp': # for these methods, use dense vectors index = MatrixSimilarity(input, num_best=MAX_SIMILAR + 1, num_features=input.numTerms) else: index = SparseMatrixSimilarity(input, num_best=MAX_SIMILAR + 1) index.normalize = False generateSimilar(corpus, index, method) logging.info("finished running %s", program)