def __prepare_sgs(prop, mean=None, use_harddata=True, mask=None): if use_harddata: out_prop = _clone_prop(prop) else: out_prop = _empty_clone(prop) if not mean is None and not numpy.isscalar(mean): mean = _require_cont_data(mean) if not mask is None: mask = _requite_ind_data(mask) return out_prop, mean, mask
def __prepare_sis(prop, data, marginal_probs, mask, use_harddata): is_lvm = not numpy.isscalar(marginal_probs[0]) if use_harddata: out_prop = _clone_prop(prop) else: out_prop = _empty_clone(prop) if is_lvm: marginal_probs = [_require_cont_data(m) for m in marginal_probs] for i in xrange(len(data)): if is_lvm: data[i]['marginal_prob'] = 0 else: data[i]['marginal_prob'] = marginal_probs[i] if not mask is None: mask = _requite_ind_data(mask) return out_prop, is_lvm, marginal_probs, mask