示例#1
0
import geopandas as gpd
import scipy as sp
import matplotlib.pyplot as plt
sys.path.append(os.environ['LAV_DIR'] + '/src/')
baseDir = os.environ['LAV_DIR']
import geomadi.lib_graph as gra
import geomadi.geo_octree as g_o
import geomadi.train_viz as t_v
import shapely as sh
from shapely.geometry.polygon import Polygon

metric = "speed"
if (len(sys.argv) > 1): metric = sys.argv[1]
projDir = baseDir + "raw/gps/" + metric + "/"
dL = os.listdir(projDir)
gO = g_o.octree(BoundBox=[5.866, 47.2704, 15.0377, 55.0574])

for d in dL:
    print(d)
    den = pd.read_csv(projDir + d)
    if 'dens' not in locals(): dens = den
    else:
        dens = dens.merge(den, on="octree", how="outer")
        dens = dens.replace(float('nan'), 0.)
        tLx = [x for x in dens.columns if bool(re.search("_x", x))]
        tLy = [x for x in dens.columns if bool(re.search("_y", x))]
        dens.loc[:, tLx] = dens[tLx].values + dens[tLy].values
        for i in tLy:
            del dens[i]
        dens.columns = ['octree'] + [x.split("_")[0] for x in tLx]
示例#2
0
    norm = 1. / (df['n'].values)
    df.loc[:, tLx] = np.multiply(tX + tY, norm[:, np.newaxis])
    for i in tLy + ['n_x', 'n_y']:
        del df[i]
    for i in tLx:
        df.rename(columns={i: i.split("_")[0]}, inplace=True)
    return df


if False:
    #library testing
    print("x | y | dx | dy")
    import geomadi.geo_octree as g_o
    import importlib
    importlib.reload(g_o)
    gO = g_o.octree(BoundBox=[5.866, 47.2704, 15.0377, 55.0574], padding=0.1)
    g2 = gO.encode(14.989551, 48.218262, 10)
    print(gO.decode(gO.encode(14.989551, 48.218262, 10)))
    print("de center  %s" % (gO.encode(10.28826401, 51.13341344, 15)))

if False:
    #choose algebra base
    l = np.array([1, 2, 4, 8])
    comb = [i - j for i in l for j in l]
    base, count = np.unique(comb, return_counts=True)
    print(base, count)
    print(len(count) / sum(count))
    print(sum(l))
    plt.bar(range(len(comb)), sorted(comb))
    plt.show()
    l2 = [-1, 0, 1]