示例#1
0
    def align(self, point, base_point, **kwargs):
        """Align point to base_point.

        Find the optimal rotation R in SO(m) such that the base point and
        R.point are well positioned.

        Parameters
        ----------
        point : array-like, shape=[..., k_landmarks, m_ambient]
            Point on the manifold.
        base_point : array-like, shape=[..., k_landmarks, m_ambient]
            Point on the manifold.

        Returns
        -------
        aligned : array-like, shape=[..., k_landmarks, m_ambient]
            R.point.
        """
        mat = gs.matmul(Matrices.transpose(point), base_point)
        left, singular_values, right = gs.linalg.svd(mat)
        det = gs.linalg.det(mat)
        conditioning = ((singular_values[..., -2] +
                         gs.sign(det) * singular_values[..., -1]) /
                        singular_values[..., 0])
        if gs.any(conditioning < 5e-4):
            logging.warning(f'Singularity close, ill-conditioned matrix '
                            f'encountered: {conditioning}')
        if gs.any(gs.isclose(conditioning, 0.)):
            logging.warning("Alignment matrix is not unique.")
        flipped = flip_determinant(Matrices.transpose(right), det)
        return Matrices.mul(point, left, Matrices.transpose(flipped))
示例#2
0
    def align_matrices(cls, point, base_point):
        """Align matrices.

        Find the optimal rotation R in SO(m) such that the base point and
        R.point are well positioned.

        Parameters
        ----------
        point : array-like, shape=[..., m, n]
            Point on the manifold.
        base_point : array-like, shape=[..., m, n]
            Point on the manifold.

        Returns
        -------
        aligned : array-like, shape=[..., m, n]
            R.point.
        """
        mat = gs.matmul(cls.transpose(point), base_point)
        left, singular_values, right = gs.linalg.svd(mat)
        det = gs.linalg.det(mat)
        conditioning = (
            singular_values[..., -2] + gs.sign(det) * singular_values[..., -1]
        ) / singular_values[..., 0]
        if gs.any(conditioning < gs.atol):
            logging.warning(
                f"Singularity close, ill-conditioned matrix "
                f"encountered: "
                f"{conditioning[conditioning < 1e-10]}"
            )
        if gs.any(gs.isclose(conditioning, 0.0)):
            logging.warning("Alignment matrix is not unique.")
        flipped = flip_determinant(cls.transpose(right), det)
        return Matrices.mul(point, left, cls.transpose(flipped))
示例#3
0
    def projection(self, point):
        r"""Project a matrix to the general linear group.

        As GL(n) is dense in the space of matrices, this is not a projection
        per se, but a regularization if the matrix is not already invertible:
        :math:`X + \epsilon I_n` is returned where :math:`\epsilon=gs.atol`
        is returned for an input X.

        Parameters
        ----------
        point : array-like, shape=[..., dim_embedding]
            Point in embedding manifold.

        Returns
        -------
        projected : array-like, shape=[..., dim_embedding]
            Projected point.
        """
        belongs = self.belongs(point)
        regularization = gs.einsum("...,ij->...ij",
                                   gs.where(~belongs, gs.atol, 0.0),
                                   self.identity)
        projected = point + regularization
        if self.positive_det:
            det = gs.linalg.det(point)
            return utils.flip_determinant(projected, det)
        return projected