def parallel_transport(self, tangent_vec_a, tangent_vec_b, base_point): r"""Parallel transport of a tangent vector. Closed-form solution for the parallel transport of a tangent vector a along the geodesic defined by exp_(base_point)(tangent_vec_b). Denoting `tangent_vec_a` by `S`, `base_point` by `A`, let `B = Exp_A(tangent_vec_b)` and :math: `E = (BA^{- 1})^({ 1 / 2})`. Then the parallel transport to `B`is: ..math:: S' = ESE^T Parameters ---------- tangent_vec_a : array-like, shape=[..., dim + 1] Tangent vector at base point to be transported. tangent_vec_b : array-like, shape=[..., dim + 1] Tangent vector at base point, initial speed of the geodesic along which the parallel transport is computed. base_point : array-like, shape=[..., dim + 1] Point on the manifold of SPD matrices. Returns ------- transported_tangent_vec: array-like, shape=[..., dim + 1] Transported tangent vector at exp_(base_point)(tangent_vec_b). """ end_point = self.exp(tangent_vec_b, base_point) inverse_base_point = GeneralLinear.inverse(base_point) congruence_mat = GeneralLinear.mul(end_point, inverse_base_point) congruence_mat = gs.linalg.sqrtm(congruence_mat) return GeneralLinear.congruent(tangent_vec_a, congruence_mat)
def transp(self, base_point, end_point, tangent): """ transports a tangent vector at a base_point to the tangent space at end_point. """ if self.exact_transport: # https://github.com/geomstats/geomstats/blob/master/geomstats/geometry/spd_matrices.py#L613 inverse_base_point = GeneralLinear.inverse(base_point) congruence_mat = GeneralLinear.mul(end_point, inverse_base_point) congruence_mat = gs.linalg.sqrtm(congruence_mat.cpu()).to(tangent) return GeneralLinear.congruent(tangent, congruence_mat) # https://github.com/NicolasBoumal/manopt/blob/master/manopt/manifolds/symfixedrank/sympositivedefinitefactory.m#L181 return tangent