def test_inner_product_matrix_matrix(self):
     euclidean = Euclidean(3)
     minkowski = Minkowski(3)
     space = ProductManifold(manifolds=[euclidean, minkowski],
                             default_point_type='matrix')
     point = space.random_uniform(1)
     result = space.metric.inner_product_matrix(point)
     expected = gs.eye(6)
     expected[3, 3] = -1
     self.assertAllClose(result, expected)
示例#2
0
 def test_inner_product_matrix_matrix(self):
     space = ProductManifold(manifolds=[
         Hypersphere(dimension=2).embedding_manifold,
         Hyperbolic(dimension=2).embedding_manifold
     ],
                             default_point_type='matrix')
     point = space.random_uniform(1)
     result = space.metric.inner_product_matrix(point)
     expected = gs.identity(6)
     expected[3, 3] = -1
     self.assertAllClose(result, expected)
示例#3
0
class TestProductManifoldMethods(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)

        self.space_matrix = ProductManifold(
            manifolds=[Hypersphere(dimension=2),
                       Hyperbolic(dimension=2)],
            default_point_type='matrix')
        self.space_vector = ProductManifold(
            manifolds=[Hypersphere(dimension=2),
                       Hyperbolic(dimension=5)],
            default_point_type='vector')

    def test_dimension(self):
        expected = 7
        result = self.space_vector.dimension
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_random_and_belongs_matrix(self):
        n_samples = 5
        data = self.space_matrix.random_uniform(n_samples)
        result = self.space_matrix.belongs(data)
        expected = gs.array([[True] * n_samples]).transpose(1, 0)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_random_and_belongs_vector(self):
        n_samples = 5
        data = self.space_vector.random_uniform(n_samples)
        result = self.space_vector.belongs(data)
        expected = gs.array([[True] * n_samples]).transpose(1, 0)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_exp_log_vector(self):
        n_samples = 5
        expected = self.space_vector.random_uniform(n_samples)
        base_point = self.space_vector.random_uniform(n_samples)
        logs = self.space_vector.metric.log(expected, base_point)
        result = self.space_vector.metric.exp(logs, base_point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_exp_log_matrix(self):
        n_samples = 5
        expected = self.space_matrix.random_uniform(n_samples)
        base_point = self.space_matrix.random_uniform(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.exp(logs, base_point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_dist_vector(self):
        n_samples = 5
        point = self.space_vector.random_uniform(n_samples)
        base_point = self.space_vector.random_uniform(n_samples)
        logs = self.space_vector.metric.log(point, base_point)
        logs = gs.einsum('..., ...j->...j',
                         1. / self.space_vector.metric.norm(logs, base_point),
                         logs)
        point = self.space_vector.metric.exp(logs, base_point)
        result = self.space_vector.metric.dist(point, base_point)
        expected = gs.ones(n_samples)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_dist_matrix(self):
        n_samples = 5
        point = self.space_matrix.random_uniform(n_samples)
        base_point = self.space_matrix.random_uniform(n_samples)
        logs = self.space_matrix.metric.log(point, base_point)
        logs = gs.einsum('..., ...j->...j',
                         1. / self.space_matrix.metric.norm(logs, base_point),
                         logs)
        point = self.space_matrix.metric.exp(logs, base_point)
        result = self.space_matrix.metric.dist(point, base_point)
        expected = gs.ones((n_samples, 1))
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_inner_product_matrix_matrix(self):
        space = ProductManifold(manifolds=[
            Hypersphere(dimension=2).embedding_manifold,
            Hyperbolic(dimension=2).embedding_manifold
        ],
                                default_point_type='matrix')
        point = space.random_uniform(1)
        result = space.metric.inner_product_matrix(point)
        expected = gs.identity(6)
        expected[3, 3] = -1
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_inner_product_matrix_vector(self):
        space = ProductManifold(manifolds=[
            Hypersphere(dimension=2).embedding_manifold,
            Hyperbolic(dimension=2).embedding_manifold
        ],
                                default_point_type='vector')
        point = space.random_uniform(1)
        expected = gs.identity(6)
        expected[3, 3] = -1
        result = space.metric.inner_product_matrix(point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_regularize_vector(self):
        expected = self.space_vector.random_uniform(5)
        result = self.space_vector.regularize(expected)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_regularize_matrix(self):
        expected = self.space_matrix.random_uniform(5)
        result = self.space_matrix.regularize(expected)
        self.assertAllClose(result, expected)
class TestProductManifoldMethods(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(1234)

        self.space_matrix = ProductManifold(
            manifolds=[Hypersphere(dim=2),
                       Hyperboloid(dim=2)],
            default_point_type='matrix')
        self.space_vector = ProductManifold(
            manifolds=[Hypersphere(dim=2),
                       Hyperboloid(dim=5)],
            default_point_type='vector')

    def test_dimension(self):
        expected = 7
        result = self.space_vector.dim
        self.assertAllClose(result, expected)

    def test_random_and_belongs_matrix(self):
        n_samples = 5
        data = self.space_matrix.random_uniform(n_samples)
        result = self.space_matrix.belongs(data)
        expected = gs.array([True] * n_samples)
        self.assertAllClose(result, expected)

    def test_random_and_belongs_vector(self):
        n_samples = 5
        data = self.space_vector.random_uniform(n_samples)
        result = self.space_vector.belongs(data)
        expected = gs.array([True] * n_samples)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_exp_log_vector(self):
        n_samples = 5
        expected = self.space_vector.random_uniform(n_samples)
        base_point = self.space_vector.random_uniform(n_samples)
        logs = self.space_vector.metric.log(expected, base_point)
        result = self.space_vector.metric.exp(logs, base_point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_exp_log_matrix(self):
        n_samples = 5
        expected = self.space_matrix.random_uniform(n_samples)
        base_point = self.space_matrix.random_uniform(n_samples)
        logs = self.space_matrix.metric.log(expected, base_point)
        result = self.space_matrix.metric.exp(logs, base_point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_dist_log_exp_norm_vector(self):
        n_samples = 5
        point = self.space_vector.random_uniform(n_samples)
        base_point = self.space_vector.random_uniform(n_samples)

        logs = self.space_vector.metric.log(point, base_point)
        normalized_logs = gs.einsum(
            '..., ...j->...j',
            1. / self.space_vector.metric.norm(logs, base_point), logs)
        point = self.space_vector.metric.exp(normalized_logs, base_point)
        result = self.space_vector.metric.dist(point, base_point)

        expected = gs.ones(n_samples)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_dist_log_exp_norm_matrix(self):
        n_samples = 10
        point = self.space_matrix.random_uniform(n_samples)
        base_point = self.space_matrix.random_uniform(n_samples)
        logs = self.space_matrix.metric.log(point, base_point)
        normalized_logs = gs.einsum(
            '..., ...jl->...jl',
            1. / self.space_matrix.metric.norm(logs, base_point), logs)
        point = self.space_matrix.metric.exp(normalized_logs, base_point)
        result = self.space_matrix.metric.dist(point, base_point)
        expected = gs.ones((n_samples, ))
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_inner_product_matrix_matrix(self):
        euclidean = Euclidean(3)
        minkowski = Minkowski(3)
        space = ProductManifold(manifolds=[euclidean, minkowski],
                                default_point_type='matrix')
        point = space.random_uniform(1)
        result = space.metric.inner_product_matrix(point)
        expected = gs.eye(6)
        expected[3, 3] = -1
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_inner_product_matrix_vector(self):
        euclidean = Euclidean(3)
        minkowski = Minkowski(3)
        space = ProductManifold(manifolds=[euclidean, minkowski],
                                default_point_type='vector')
        point = space.random_uniform(1)
        expected = gs.eye(6)
        expected[3, 3] = -1
        result = space.metric.inner_product_matrix(point)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_only
    def test_regularize_vector(self):
        expected = self.space_vector.random_uniform(5)
        result = self.space_vector.regularize(expected)
        self.assertAllClose(result, expected)

    @geomstats.tests.np_and_pytorch_only
    def test_regularize_matrix(self):
        expected = self.space_matrix.random_uniform(5)
        result = self.space_matrix.regularize(expected)
        self.assertAllClose(result, expected)