def test_parallel_transport_and_sphere_parallel_transport( self, dim, tangent_vec_a, tangent_vec_b, base_point): """Test consistency between sphere's parallel transports. The parallel transport of the class Hypersphere is defined in terms of extrinsic coordinates. The parallel transport of pullback_metric is defined in terms of the spherical coordinates. """ pullback_metric = PullbackMetric(dim=dim, embedding_dim=dim + 1, immersion=immersion) immersed_base_point = immersion(base_point) jac_immersion = pullback_metric.jacobian_immersion(base_point) immersed_tangent_vec_a = gs.matmul(jac_immersion, tangent_vec_a) immersed_tangent_vec_b = gs.matmul(jac_immersion, tangent_vec_b) result_dict = pullback_metric.ladder_parallel_transport( tangent_vec_a, base_point=base_point, direction=tangent_vec_b) result = result_dict["transported_tangent_vec"] end_point = result_dict["end_point"] result = pullback_metric.tangent_immersion(v=result, x=end_point) expected = Hypersphere(dim).metric.parallel_transport( immersed_tangent_vec_a, base_point=immersed_base_point, direction=immersed_tangent_vec_b, ) self.assertAllClose(result, expected, atol=1e-5)
class TestPullbackMetric(geomstats.tests.TestCase): def setUp(self): warnings.simplefilter("ignore", category=UserWarning) gs.random.seed(0) self.dim = 2 self.sphere = Hypersphere(dim=self.dim) self.sphere_metric = self.sphere.metric def _sphere_immersion(spherical_coords): theta = spherical_coords[..., 0] phi = spherical_coords[..., 1] return gs.array([ gs.cos(phi) * gs.sin(theta), gs.sin(phi) * gs.sin(theta), gs.cos(theta), ]) self.immersion = _sphere_immersion self.pullback_metric = PullbackMetric(dim=self.dim, embedding_dim=self.dim + 1, immersion=self.immersion) @geomstats.tests.autograd_tf_and_torch_only def test_immersion(self): expected = gs.array([0.0, 0.0, 1.0]) result = self.immersion(gs.array([0.0, 0.0])) self.assertAllClose(result, expected) expected = gs.array([0.0, 0.0, -1.0]) result = self.immersion(gs.array([gs.pi, 0.0])) self.assertAllClose(result, expected) expected = gs.array([-1.0, 0.0, 0.0]) result = self.immersion(gs.array([gs.pi / 2.0, gs.pi])) self.assertAllClose(result, expected) @geomstats.tests.autograd_tf_and_torch_only def test_immersion_and_spherical_to_extrinsic(self): point = gs.array([0.0, 0.0]) expected = self.immersion(point) result = self.sphere.spherical_to_extrinsic(point) self.assertAllClose(result, expected) point = gs.array([0.2, 0.1]) expected = self.immersion(point) result = self.sphere.spherical_to_extrinsic(point) self.assertAllClose(result, expected) @geomstats.tests.autograd_tf_and_torch_only def test_jacobian_immersion(self): def _expected_jacobian_immersion(point): theta = point[..., 0] phi = point[..., 1] jacobian = gs.array([ [gs.cos(phi) * gs.cos(theta), -gs.sin(phi) * gs.sin(theta)], [gs.sin(phi) * gs.cos(theta), gs.cos(phi) * gs.sin(theta)], [-gs.sin(theta), 0.0], ]) return jacobian pole = gs.array([0.0, 0.0]) result = self.pullback_metric.jacobian_immersion(pole) expected = _expected_jacobian_immersion(pole) self.assertAllClose(result, expected) base_point = gs.array([0.22, 0.1]) result = self.pullback_metric.jacobian_immersion(base_point) expected = _expected_jacobian_immersion(base_point) self.assertAllClose(result, expected) base_point = gs.array([0.1, 0.88]) result = self.pullback_metric.jacobian_immersion(base_point) expected = _expected_jacobian_immersion(base_point) self.assertAllClose(result, expected) @geomstats.tests.autograd_tf_and_torch_only def test_tangent_immersion(self): point = gs.array([gs.pi / 2.0, gs.pi / 2.0]) tangent_vec = gs.array([1.0, 0.0]) result = self.pullback_metric.tangent_immersion(tangent_vec, point) expected = gs.array([0.0, 0.0, -1.0]) self.assertAllClose(result, expected) tangent_vec = gs.array([0.0, 1.0]) result = self.pullback_metric.tangent_immersion(tangent_vec, point) expected = gs.array([-1.0, 0.0, 0.0]) self.assertAllClose(result, expected) point = gs.array([gs.pi / 2.0, 0.0]) tangent_vec = gs.array([1.0, 0.0]) result = self.pullback_metric.tangent_immersion(tangent_vec, point) expected = gs.array([0.0, 0.0, -1.0]) self.assertAllClose(result, expected) tangent_vec = gs.array([0.0, 1.0]) result = self.pullback_metric.tangent_immersion(tangent_vec, point) expected = gs.array([0.0, 1.0, 0.0]) self.assertAllClose(result, expected) @geomstats.tests.autograd_tf_and_torch_only def test_metric_matrix(self): def _expected_metric_matrix(point): theta = point[..., 0] mat = gs.array([[1.0, 0.0], [0.0, gs.sin(theta)**2]]) return mat base_point = gs.array([0.0, 0.0]) result = self.pullback_metric.metric_matrix(base_point) expected = _expected_metric_matrix(base_point) self.assertAllClose(result, expected) base_point = gs.array([1.0, 1.0]) result = self.pullback_metric.metric_matrix(base_point) expected = _expected_metric_matrix(base_point) self.assertAllClose(result, expected) base_point = gs.array([0.3, 0.8]) result = self.pullback_metric.metric_matrix(base_point) expected = _expected_metric_matrix(base_point) self.assertAllClose(result, expected) @geomstats.tests.autograd_tf_and_torch_only def test_inverse_metric_matrix(self): def _expected_inverse_metric_matrix(point): theta = point[..., 0] mat = gs.array([[1.0, 0.0], [0.0, gs.sin(theta)**(-2)]]) return mat base_point = gs.array([0.6, -1.0]) result = self.pullback_metric.metric_inverse_matrix(base_point) expected = _expected_inverse_metric_matrix(base_point) self.assertAllClose(result, expected) base_point = gs.array([0.8, -0.8]) result = self.pullback_metric.metric_inverse_matrix(base_point) expected = _expected_inverse_metric_matrix(base_point) self.assertAllClose(result, expected) @geomstats.tests.autograd_tf_and_torch_only def test_inner_product_and_sphere_inner_product(self): """Test consistency between sphere's inner-products. The inner-product of the class Hypersphere is defined in terms of extrinsic coordinates. The inner-product of pullback_metric is defined in terms of the spherical coordinates. """ tangent_vec_a = gs.array([0.0, 1.0]) tangent_vec_b = gs.array([0.0, 1.0]) base_point = gs.array([gs.pi / 2.0, 0.0]) immersed_base_point = self.immersion(base_point) jac_immersion = self.pullback_metric.jacobian_immersion(base_point) immersed_tangent_vec_a = gs.matmul(jac_immersion, tangent_vec_a) immersed_tangent_vec_b = gs.matmul(jac_immersion, tangent_vec_b) result = self.pullback_metric.inner_product(tangent_vec_a, tangent_vec_b, base_point=base_point) expected = self.sphere_metric.inner_product( immersed_tangent_vec_a, immersed_tangent_vec_b, base_point=immersed_base_point, ) self.assertAllClose(result, expected) tangent_vec_a = gs.array([0.4, 1.0]) tangent_vec_b = gs.array([0.2, 0.6]) base_point = gs.array([gs.pi / 2.0, 0.1]) immersed_base_point = self.immersion(base_point) jac_immersion = self.pullback_metric.jacobian_immersion(base_point) immersed_tangent_vec_a = gs.matmul(jac_immersion, tangent_vec_a) immersed_tangent_vec_b = gs.matmul(jac_immersion, tangent_vec_b) result = self.pullback_metric.inner_product(tangent_vec_a, tangent_vec_b, base_point=base_point) expected = self.sphere_metric.inner_product( immersed_tangent_vec_a, immersed_tangent_vec_b, base_point=immersed_base_point, ) self.assertAllClose(result, expected) @geomstats.tests.autograd_and_tf_only def test_christoffels_and_sphere_christoffels(self): """Test consistency between sphere's christoffels. The christoffels of the class Hypersphere are defined in terms of spherical coordinates. The christoffels of pullback_metric are also defined in terms of the spherical coordinates. """ base_point = gs.array([0.1, 0.2]) result = self.pullback_metric.christoffels(base_point=base_point) expected = self.sphere_metric.christoffels(point=base_point) self.assertAllClose(result, expected) base_point = gs.array([0.7, 0.233]) result = self.pullback_metric.christoffels(base_point=base_point) expected = self.sphere_metric.christoffels(point=base_point) self.assertAllClose(result, expected) @geomstats.tests.autograd_tf_and_torch_only def test_exp_and_sphere_exp(self): """Test consistency between sphere's Riemannian exp. The exp map of the class Hypersphere is defined in terms of extrinsic coordinates. The exp map of pullback_metric is defined in terms of the spherical coordinates. """ base_point = gs.array([gs.pi / 2.0, 0.0]) tangent_vec_a = gs.array([0.0, 1.0]) immersed_base_point = self.immersion(base_point) jac_immersion = self.pullback_metric.jacobian_immersion(base_point) immersed_tangent_vec_a = gs.matmul(jac_immersion, tangent_vec_a) result = self.pullback_metric.exp(tangent_vec_a, base_point=base_point) result = self.sphere.spherical_to_extrinsic(result) expected = self.sphere.metric.exp(immersed_tangent_vec_a, base_point=immersed_base_point) self.assertAllClose(result, expected) base_point = gs.array([gs.pi / 2.0, 0.1]) tangent_vec_a = gs.array([0.4, 1.0]) immersed_base_point = self.immersion(base_point) jac_immersion = self.pullback_metric.jacobian_immersion(base_point) immersed_tangent_vec_a = gs.matmul(jac_immersion, tangent_vec_a) result = self.pullback_metric.exp(tangent_vec_a, base_point=base_point) result = self.sphere.spherical_to_extrinsic(result) expected = self.sphere.metric.exp(immersed_tangent_vec_a, base_point=immersed_base_point) self.assertAllClose(result, expected, atol=1e-1) @geomstats.tests.autograd_and_torch_only def test_parallel_transport_and_sphere_parallel_transport(self): """Test consistency between sphere's parallel transports. The parallel transport of the class Hypersphere is defined in terms of extrinsic coordinates. The parallel transport of pullback_metric is defined in terms of the spherical coordinates. """ tangent_vec_a = gs.array([0.0, 1.0]) tangent_vec_b = gs.array([0.0, 1.0]) base_point = gs.array([gs.pi / 2.0, 0.0]) immersed_base_point = self.immersion(base_point) jac_immersion = self.pullback_metric.jacobian_immersion(base_point) immersed_tangent_vec_a = gs.matmul(jac_immersion, tangent_vec_a) immersed_tangent_vec_b = gs.matmul(jac_immersion, tangent_vec_b) result_dict = self.pullback_metric.ladder_parallel_transport( tangent_vec_a, tangent_vec_b, base_point=base_point) result = result_dict["transported_tangent_vec"] end_point = result_dict["end_point"] result = self.pullback_metric.tangent_immersion(v=result, x=end_point) expected = self.sphere_metric.parallel_transport( immersed_tangent_vec_a, immersed_tangent_vec_b, base_point=immersed_base_point, ) self.assertAllClose(result, expected, atol=1e-5)