def test_inner_product(self, n, power_euclidean, tangent_vec_a, tangent_vec_b, base_point, expected): metric = SPDMetricEuclidean(n, power_euclidean) result = metric.inner_product(gs.array(tangent_vec_a), gs.array(tangent_vec_b), gs.array(base_point)) self.assertAllClose(result, gs.array(expected))
def test_power_euclidean_inner_product(self): base_point = gs.array([[1., 0., 0.], [0., 2.5, 1.5], [0., 1.5, 2.5]]) tangent_vec = gs.array([[2., 1., 1.], [1., .5, .5], [1., .5, .5]]) metric = SPDMetricEuclidean(3, power_euclidean=.5) result = metric.inner_product(tangent_vec, tangent_vec, base_point) expected = [[3472 / 576]] self.assertAllClose(result, expected)
def test_log_and_exp_euclidean_p05(self): """Test of SPDMetricEuclidean.log and exp methods for power_euclidean=0.5.""" base_point = gs.array([[5.0, 0.0, 0.0], [0.0, 7.0, 2.0], [0.0, 2.0, 8.0]]) point = gs.array([[9.0, 0.0, 0.0], [0.0, 5.0, 0.0], [0.0, 0.0, 1.0]]) metric = SPDMetricEuclidean(3, power_euclidean=0.5) log = metric.log(point=point, base_point=base_point) result = metric.exp(tangent_vec=log, base_point=base_point) expected = point self.assertAllClose(result, expected)
def setUp(self): """Set up the test.""" warnings.simplefilter('ignore', category=ImportWarning) gs.random.seed(1234) self.n = 3 self.space = SPDMatrices(n=self.n) self.metric_affine = SPDMetricAffine(n=self.n) self.metric_bureswasserstein = SPDMetricBuresWasserstein(n=self.n) self.metric_euclidean = SPDMetricEuclidean(n=self.n) self.metric_logeuclidean = SPDMetricLogEuclidean(n=self.n) self.n_samples = 4
def setUp_alt(self, n=3, n_samples=4): """Set up the test, flexible parameters.""" warnings.simplefilter('ignore', category=ImportWarning) gs.random.seed(1234) self.n = n self.space = SPDMatrices(n=self.n) self.metric_affine = SPDMetricAffine(n=self.n) self.metric_procrustes = SPDMetricProcrustes(n=self.n) self.metric_euclidean = SPDMetricEuclidean(n=self.n) self.metric_logeuclidean = SPDMetricLogEuclidean(n=self.n) self.n_samples = n_samples
def test_power_euclidean_inner_product(self): """Test of SPDMetricEuclidean.inner_product method.""" base_point = gs.array([[1., 0., 0.], [0., 2.5, 1.5], [0., 1.5, 2.5]]) tangent_vec = gs.array([[2., 1., 1.], [1., .5, .5], [1., .5, .5]]) metric = SPDMetricEuclidean(3, power_euclidean=.5) result = metric.inner_product(tangent_vec, tangent_vec, base_point) expected = 3472 / 576 self.assertAllClose(result, expected) result = self.metric_euclidean.inner_product(tangent_vec, tangent_vec, base_point) expected = MatricesMetric(3, 3).inner_product(tangent_vec, tangent_vec) self.assertAllClose(result, expected)
def setUp(self): warnings.simplefilter('ignore', category=ImportWarning) gs.random.seed(1234) self.n = 3 self.space = SPDMatrices(n=self.n) self.metric_affine = SPDMetricAffine(n=self.n) self.metric_procrustes = SPDMetricProcrustes(n=self.n) self.metric_euclidean = SPDMetricEuclidean(n=self.n) self.metric_logeuclidean = SPDMetricLogEuclidean(n=self.n) self.n_samples = 4
def test_parallel_transport( self, n, power_euclidean, tangent_vec_a, base_point, tangent_vec_b ): metric = SPDMetricEuclidean(n, power_euclidean) result = metric.parallel_transport(tangent_vec_a, base_point, tangent_vec_b) self.assertAllClose(result, tangent_vec_a)
def test_squared_dist_is_symmetric(self, n, power_euclidean, point_a, point_b): metric = SPDMetricEuclidean(n, power_euclidean) sd_a_b = metric.squared_dist(point_a, point_b) sd_b_a = metric.squared_dist(point_b, point_a) self.assertAllClose(sd_a_b, sd_b_a, atol=gs.atol * 100)
def test_log_then_exp(self, n, power_euclidean, point, base_point): metric = SPDMetricEuclidean(n, power_euclidean) log = metric.log(gs.array(point), base_point=gs.array(base_point)) result = metric.exp(tangent_vec=log, base_point=gs.array(base_point)) self.assertAllClose(result, point, atol=gs.atol * 1000)
def test_log(self, n, power_euclidean, point, base_point, expected): metric = SPDMetricEuclidean(n) result = metric.log(gs.array(point), gs.array(base_point)) self.assertAllClose(result, gs.array(expected))
def test_exp_domain(self, n, power_euclidean, tangent_vec, base_point, expected): metric = SPDMetricEuclidean(n, power_euclidean) result = metric.exp_domain( gs.array(tangent_vec), gs.array(base_point), expected ) self.assertAllClose(result, gs.array(expected))
class TestSPDMatrices(geomstats.tests.TestCase): """Test of SPDMatrices methods.""" def setUp(self): """Set up the test.""" warnings.simplefilter('ignore', category=ImportWarning) gs.random.seed(1234) self.n = 3 self.space = SPDMatrices(n=self.n) self.metric_affine = SPDMetricAffine(n=self.n) self.metric_bureswasserstein = SPDMetricBuresWasserstein(n=self.n) self.metric_euclidean = SPDMetricEuclidean(n=self.n) self.metric_logeuclidean = SPDMetricLogEuclidean(n=self.n) self.n_samples = 4 def test_belongs(self): """Test of belongs method.""" mats = gs.array([[3., -1.], [-1., 3.]]) result = SPDMatrices(2).belongs(mats) expected = True self.assertAllClose(result, expected) mats = gs.array([[-1., -1.], [-1., 3.]]) result = SPDMatrices(2).belongs(mats) expected = False self.assertAllClose(result, expected) mats = gs.eye(3) result = SPDMatrices(2).belongs(mats) expected = False self.assertAllClose(result, expected) def test_belongs_vectorization(self): """Test of belongs method.""" mats = gs.array([[[1., 0], [0, 1.]], [[1., 2.], [2., 1.]], [[1., 0.], [1., 1.]]]) result = SPDMatrices(2).belongs(mats) expected = gs.array([True, False, False]) self.assertAllClose(result, expected) def test_random_point_and_belongs(self): """Test of random_point and belongs methods.""" point = self.space.random_point() result = self.space.belongs(point) expected = True self.assertAllClose(result, expected) def test_random_point_and_belongs_vectorization(self): """Test of random_point and belongs methods.""" points = self.space.random_point(4) result = self.space.belongs(points) expected = gs.array([True] * 4) self.assertAllClose(result, expected) def test_vector_from_symmetric_matrix_and_symmetric_matrix_from_vector( self): """Test for matrix to vector and vector to matrix conversions.""" sym_mat_1 = gs.array([[1., 0.6, -3.], [0.6, 7., 0.], [-3., 0., 8.]]) vector_1 = self.space.to_vector(sym_mat_1) result_1 = self.space.from_vector(vector_1) expected_1 = sym_mat_1 self.assertTrue(gs.allclose(result_1, expected_1)) vector_2 = gs.array([1., 2., 3., 4., 5., 6.]) sym_mat_2 = self.space.from_vector(vector_2) result_2 = self.space.to_vector(sym_mat_2) expected_2 = vector_2 self.assertTrue(gs.allclose(result_2, expected_2)) def test_vector_and_symmetric_matrix_vectorization(self): """Test of vectorization.""" n_samples = self.n_samples vector = gs.random.rand(n_samples, 6) sym_mat = self.space.from_vector(vector) result = self.space.to_vector(sym_mat) expected = vector self.assertTrue(gs.allclose(result, expected)) sym_mat = self.space.random_point(n_samples) vector = self.space.to_vector(sym_mat) result = self.space.from_vector(vector) expected = sym_mat self.assertTrue(gs.allclose(result, expected)) def test_logm(self): """Test of logm method.""" expected = gs.array([[[0., 1., 0.], [1., 0., 0.], [0., 0., 1.]]]) c = math.cosh(1) s = math.sinh(1) e = math.exp(1) v = gs.array([[[c, s, 0.], [s, c, 0.], [0., 0., e]]]) result = self.space.logm(v) self.assertAllClose(result, expected) def test_differential_power(self): """Test of differential_power method.""" base_point = gs.array([[1., 0., 0.], [0., 2.5, 1.5], [0., 1.5, 2.5]]) tangent_vec = gs.array([[2., 1., 1.], [1., .5, .5], [1., .5, .5]]) power = .5 result = self.space.differential_power(power=power, tangent_vec=tangent_vec, base_point=base_point) expected = gs.array([[1., 1 / 3, 1 / 3], [1 / 3, .125, .125], [1 / 3, .125, .125]]) self.assertAllClose(result, expected) def test_inverse_differential_power(self): """Test of inverse_differential_power method.""" base_point = gs.array([[1., 0., 0.], [0., 2.5, 1.5], [0., 1.5, 2.5]]) tangent_vec = gs.array([[1., 1 / 3, 1 / 3], [1 / 3, .125, .125], [1 / 3, .125, .125]]) power = .5 result = self.space.inverse_differential_power(power=power, tangent_vec=tangent_vec, base_point=base_point) expected = gs.array([[2., 1., 1.], [1., .5, .5], [1., .5, .5]]) self.assertAllClose(result, expected) def test_differential_log(self): """Test of differential_log method.""" base_point = gs.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 4.]]) tangent_vec = gs.array([[1., 1., 3.], [1., 1., 3.], [3., 3., 4.]]) result = self.space.differential_log(tangent_vec, base_point) x = 2 * gs.log(2.) expected = gs.array([[1., 1., x], [1., 1., x], [x, x, 1]]) self.assertAllClose(result, expected) def test_inverse_differential_log(self): """Test of inverse_differential_log method.""" base_point = gs.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 4.]]) x = 2 * gs.log(2.) tangent_vec = gs.array([[1., 1., x], [1., 1., x], [x, x, 1]]) result = self.space.inverse_differential_log(tangent_vec, base_point) expected = gs.array([[1., 1., 3.], [1., 1., 3.], [3., 3., 4.]]) self.assertAllClose(result, expected) def test_differential_exp(self): """Test of differential_exp method.""" base_point = gs.array([[1., 0., 0.], [0., 1., 0.], [0., 0., -1.]]) tangent_vec = gs.array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]) result = self.space.differential_exp(tangent_vec, base_point) x = gs.exp(1.) y = gs.sinh(1.) expected = gs.array([[x, x, y], [x, x, y], [y, y, 1 / x]]) self.assertAllClose(result, expected) def test_inverse_differential_exp(self): """Test of inverse_differential_exp method.""" base_point = gs.array([[1., 0., 0.], [0., 1., 0.], [0., 0., -1.]]) x = gs.exp(1.) y = gs.sinh(1.) tangent_vec = gs.array([[x, x, y], [x, x, y], [y, y, 1. / x]]) result = self.space.inverse_differential_exp(tangent_vec, base_point) expected = gs.array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]) self.assertAllClose(result, expected) def test_bureswasserstein_inner_product(self): """Test of SPDMetricBuresWasserstein.inner_product method.""" base_point = gs.array([[1., 0., 0.], [0., 1.5, .5], [0., .5, 1.5]]) tangent_vec_a = gs.array([[2., 1., 1.], [1., .5, .5], [1., .5, .5]]) tangent_vec_b = gs.array([[1., 2., 4.], [2., 3., 8.], [4., 8., 5.]]) metric = SPDMetricBuresWasserstein(3) result = metric.inner_product(tangent_vec_a, tangent_vec_b, base_point) expected = gs.array(4.) self.assertAllClose(result, expected) def test_power_affine_inner_product(self): """Test of SPDMetricAffine.inner_product method.""" base_point = gs.array([[1., 0., 0.], [0., 2.5, 1.5], [0., 1.5, 2.5]]) tangent_vec = gs.array([[2., 1., 1.], [1., .5, .5], [1., .5, .5]]) metric = SPDMetricAffine(3, power_affine=.5) result = metric.inner_product(tangent_vec, tangent_vec, base_point) expected = 713 / 144 self.assertAllClose(result, expected) def test_power_euclidean_inner_product(self): """Test of SPDMetricEuclidean.inner_product method.""" base_point = gs.array([[1., 0., 0.], [0., 2.5, 1.5], [0., 1.5, 2.5]]) tangent_vec = gs.array([[2., 1., 1.], [1., .5, .5], [1., .5, .5]]) metric = SPDMetricEuclidean(3, power_euclidean=.5) result = metric.inner_product(tangent_vec, tangent_vec, base_point) expected = 3472 / 576 self.assertAllClose(result, expected) result = self.metric_euclidean.inner_product(tangent_vec, tangent_vec, base_point) expected = MatricesMetric(3, 3).inner_product(tangent_vec, tangent_vec) self.assertAllClose(result, expected) @geomstats.tests.np_and_tf_only def test_euclidean_exp_domain(self): """Test of SPDMetricEuclidean.exp_domain method.""" base_point = gs.array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) tangent_vec = gs.array([[-1., 0., 0.], [0., -.5, 0.], [0., 0., 1.]]) metric = self.metric_euclidean result = metric.exp_domain(tangent_vec, base_point) expected = gs.array([-3, 1]) self.assertAllClose(result, expected) def test_log_euclidean_inner_product(self): """Test of SPDMetricLogEuclidean.inner_product method.""" base_point = gs.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 4.]]) tangent_vec = gs.array([[1., 1., 3.], [1., 1., 3.], [3., 3., 4.]]) metric = self.metric_logeuclidean result = metric.inner_product(tangent_vec, tangent_vec, base_point) x = 2 * gs.log(2.) expected = 5. + 4. * x**2 self.assertAllClose(result, expected) def test_log_and_exp_affine_invariant(self): """Test of SPDMetricAffine.log and exp methods with power=1.""" base_point = gs.array([[5., 0., 0.], [0., 7., 2.], [0., 2., 8.]]) point = gs.array([[9., 0., 0.], [0., 5., 0.], [0., 0., 1.]]) metric = self.metric_affine log = metric.log(point=point, base_point=base_point) result = metric.exp(tangent_vec=log, base_point=base_point) expected = point self.assertAllClose(result, expected) def test_log_and_exp_power_affine(self): """Test of SPDMetricAffine.log and exp methods with power!=1.""" base_point = gs.array([[5., 0., 0.], [0., 7., 2.], [0., 2., 8.]]) point = gs.array([[9., 0., 0.], [0., 5., 0.], [0., 0., 1.]]) metric = SPDMetricAffine(3, power_affine=.5) log = metric.log(point, base_point) result = metric.exp(log, base_point) expected = point self.assertAllClose(result, expected) def test_log_and_exp_bureswasserstein(self): """Test of SPDMetricBuresWasserstein.log and exp methods.""" base_point = gs.array([[5., 0., 0.], [0., 7., 2.], [0., 2., 8.]]) point = gs.array([[9., 0., 0.], [0., 5., 0.], [0., 0., 1.]]) metric = self.metric_bureswasserstein log = metric.log(point=point, base_point=base_point) result = metric.exp(tangent_vec=log, base_point=base_point) expected = point self.assertAllClose(result, expected) def test_log_and_exp_logeuclidean(self): """Test of SPDMetricLogEuclidean.log and exp methods.""" base_point = gs.array([[5., 0., 0.], [0., 7., 2.], [0., 2., 8.]]) point = gs.array([[9., 0., 0.], [0., 5., 0.], [0., 0., 1.]]) metric = self.metric_logeuclidean log = metric.log(point=point, base_point=base_point) result = metric.exp(tangent_vec=log, base_point=base_point) expected = point self.assertAllClose(result, expected) def test_exp_and_belongs(self): """Test of SPDMetricAffine.exp with power=1 and belongs methods.""" n_samples = self.n_samples base_point = self.space.random_point(n_samples=1) tangent_vec = self.space.random_tangent_vec(n_samples=n_samples, base_point=base_point) metric = self.metric_affine exps = metric.exp(tangent_vec, base_point) result = self.space.belongs(exps) expected = gs.array([True] * n_samples) self.assertAllClose(result, expected) def test_exp_vectorization(self): """Test of SPDMetricAffine.exp with power=1 and vectorization.""" n_samples = self.n_samples one_base_point = self.space.random_point(n_samples=1) n_base_point = self.space.random_point(n_samples=n_samples) n_tangent_vec_same_base = self.space.random_tangent_vec( n_samples=n_samples, base_point=one_base_point) n_tangent_vec = self.space.random_tangent_vec(n_samples=n_samples, base_point=n_base_point) metric = self.metric_affine # Test with the 1 base_point, and several different tangent_vecs result = metric.exp(n_tangent_vec_same_base, one_base_point) self.assertAllClose(gs.shape(result), (n_samples, self.space.n, self.space.n)) # Test with the same number of base_points and tangent_vecs result = metric.exp(n_tangent_vec, n_base_point) self.assertAllClose(gs.shape(result), (n_samples, self.space.n, self.space.n)) def test_log_vectorization(self): """Test of SPDMetricAffine.log with power 1 and vectorization.""" n_samples = self.n_samples one_base_point = self.space.random_point(n_samples=1) n_base_point = self.space.random_point(n_samples=n_samples) one_point = self.space.random_point(n_samples=1) n_point = self.space.random_point(n_samples=n_samples) metric = self.metric_affine # Test with different points, one base point result = metric.log(n_point, one_base_point) self.assertAllClose(gs.shape(result), (n_samples, self.space.n, self.space.n)) # Test with the same number of points and base points result = metric.log(n_point, n_base_point) self.assertAllClose(gs.shape(result), (n_samples, self.space.n, self.space.n)) # Test with the one point and n base points result = metric.log(one_point, n_base_point) self.assertAllClose(gs.shape(result), (n_samples, self.space.n, self.space.n)) def test_geodesic_and_belongs(self): """Test of SPDMetricAffine.geodesic with power 1 and belongs.""" initial_point = self.space.random_point() initial_tangent_vec = self.space.random_tangent_vec( n_samples=1, base_point=initial_point) metric = self.metric_affine geodesic = metric.geodesic(initial_point=initial_point, initial_tangent_vec=initial_tangent_vec) n_points = 10 t = gs.linspace(start=0., stop=1., num=n_points) points = geodesic(t) result = self.space.belongs(points) self.assertTrue(gs.all(result)) def test_squared_dist_is_symmetric(self): """Test of SPDMetricAffine.squared_dist (power=1) and is_symmetric.""" n_samples = self.n_samples point_1 = self.space.random_point(n_samples=1) point_2 = self.space.random_point(n_samples=1) point_1 = gs.cast(point_1, gs.float64) point_2 = gs.cast(point_2, gs.float64) metric = self.metric_affine sq_dist_1_2 = metric.squared_dist(point_1, point_2) sq_dist_2_1 = metric.squared_dist(point_2, point_1) self.assertAllClose(sq_dist_1_2, sq_dist_2_1) point_2 = self.space.random_point(n_samples=n_samples) point_2 = gs.cast(point_2, gs.float64) sq_dist_1_2 = metric.squared_dist(point_1, point_2) sq_dist_2_1 = metric.squared_dist(point_2, point_1) self.assertAllClose(sq_dist_1_2, sq_dist_2_1) point_1 = self.space.random_point(n_samples=n_samples) point_2 = self.space.random_point(n_samples=1) point_1 = gs.cast(point_1, gs.float64) point_2 = gs.cast(point_2, gs.float64) sq_dist_1_2 = metric.squared_dist(point_1, point_2) sq_dist_2_1 = metric.squared_dist(point_2, point_1) self.assertAllClose(sq_dist_1_2, sq_dist_2_1) sq_dist_1_2 = metric.squared_dist(point_1, point_2) sq_dist_2_1 = metric.squared_dist(point_2, point_1) self.assertAllClose(sq_dist_1_2, sq_dist_2_1) def test_squared_dist_vectorization(self): """Test of SPDMetricAffine.squared_dist (power=1) and vectorization.""" n_samples = self.n_samples point_1 = self.space.random_point(n_samples=n_samples) point_2 = self.space.random_point(n_samples=n_samples) metric = self.metric_affine result = metric.squared_dist(point_1, point_2) self.assertAllClose(gs.shape(result), (n_samples, )) point_1 = self.space.random_point(n_samples=1) point_2 = self.space.random_point(n_samples=n_samples) result = metric.squared_dist(point_1, point_2) self.assertAllClose(gs.shape(result), (n_samples, )) point_1 = self.space.random_point(n_samples=n_samples) point_2 = self.space.random_point(n_samples=1) result = metric.squared_dist(point_1, point_2) self.assertAllClose(gs.shape(result), (n_samples, )) point_1 = self.space.random_point(n_samples=1) point_2 = self.space.random_point(n_samples=1) result = metric.squared_dist(point_1, point_2) self.assertAllClose(gs.shape(result), ()) def test_parallel_transport_affine_invariant(self): """Test of SPDMetricAffine.parallel_transport method with power=1.""" n_samples = self.n_samples gs.random.seed(1) point = self.space.random_point(n_samples) tan_a = self.space.random_tangent_vec(n_samples, point) tan_b = self.space.random_tangent_vec(n_samples, point) point = gs.cast(point, gs.float64) tan_a = gs.cast(tan_a, gs.float64) tan_b = gs.cast(tan_b, gs.float64) metric = self.metric_affine expected = metric.norm(tan_a, point) end_point = metric.exp(tan_b, point) transported = metric.parallel_transport(tan_a, tan_b, point) result = metric.norm(transported, end_point) self.assertAllClose(expected, result) def test_squared_dist_bureswasserstein(self): """Test of SPDMetricBuresWasserstein.squared_dist method.""" point_a = gs.array([[5., 0., 0.], [0., 7., 2.], [0., 2., 8.]]) point_b = gs.array([[9., 0., 0.], [0., 5., 0.], [0., 0., 1.]]) metric = self.metric_bureswasserstein result = metric.squared_dist(point_a, point_b) log = metric.log(point=point_b, base_point=point_a) expected = metric.squared_norm(vector=log, base_point=point_a) self.assertAllClose(result, expected) def test_squared_dist_bureswasserstein_vectorization(self): """Test of SPDMetricBuresWasserstein.squared_dist method.""" point_a = self.space.random_point(2) point_b = gs.array([[9., 0., 0.], [0., 5., 0.], [0., 0., 1.]]) point_a = gs.cast(point_a, gs.float64) point_b = gs.cast(point_b, gs.float64) metric = self.metric_bureswasserstein result = metric.squared_dist(point_a, point_b) log = metric.log(point=point_b, base_point=point_a) expected = metric.squared_norm(vector=log, base_point=point_a) self.assertAllClose(result, expected) def test_to_tangent_and_is_tangent(self): mat = gs.random.rand(3, 3) projection = self.space.to_tangent(mat) result = self.space.is_tangent(projection) self.assertTrue(result)