示例#1
0
def _get_tile_data_(_filelist, _outfile, _band_order, _tile_specs, _composite_type):
    _vrtfile = '/vsimem/' + Handler(_outfile).basename.split('.tif')[0] + '_tmp_layerstack.vrt'
    _outfile = '/vsimem/' + Handler(_outfile).basename.split('.tif')[0] + '_tmp_layerstack.tif'

    _mraster = MultiRaster(_filelist)
    _layerstack_vrt = _mraster.layerstack(return_vrt=True, outfile=_outfile)

    _lras = Raster('_tmp_layerstack')
    _lras.datasource = _layerstack_vrt
    _lras.initialize()
    _lras.make_tile_grid(*_tile_specs)

    for _ii in range(_lras.ntiles):
        yield _filelist, _outfile, _band_order, _lras.tile_grid[_ii], _composite_type
示例#2
0
def _tile_process_(args):
    _filelist, _outfile, _band_order, _tile_dict, _composite_type = args
    _tile_coords = _tile_dict['block_coords']
    _xmin, _ymin = _tile_dict['first_pixel']

    _x, _y, _cols, _rows = _tile_coords

    _outfile = '/vsimem/' + Handler(_outfile).basename.split('.tif')[0] + \
               '_{}.tif'.format('_'.join([str(j) for j in _tile_coords]))

    _mraster = MultiRaster(_filelist)
    _layerstack_vrt = _mraster.layerstack(return_vrt=True, outfile=_outfile)

    _lras = Raster('_tmp_layerstack')
    _lras.datasource = _layerstack_vrt
    _lras.initialize()
    _tile_arr = _lras.get_tile(_band_order, _tile_coords).copy()

    if _composite_type == 'mean':
        _temp_arr = np.apply_along_axis(lambda x: np.mean(x[x != _lras.nodatavalue])
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)
    elif _composite_type == 'median':
        _temp_arr = np.apply_along_axis(lambda x: np.median(x[x != _lras.nodatavalue])
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)
    elif _composite_type == 'max':
        _temp_arr = np.apply_along_axis(lambda x: np.max(x[x != _lras.nodatavalue])
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)

    elif _composite_type == 'min':
        _temp_arr = np.apply_along_axis(lambda x: np.min(x[x != _lras.nodatavalue])
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)

    elif 'pctl' in _composite_type:
        pctl = int(_composite_type.split('_')[1])
        _temp_arr = np.apply_along_axis(lambda x: np.percentile(x[x != _lras.nodatavalue], pctl)
                                        if (x[x != _lras.nodatavalue]).shape[0] > 0
                                        else _lras.nodatavalue, 0, _tile_arr)
    else:
        _temp_arr = None

    _lras = None
    _mraster = None
    Handler(_outfile).file_delete()
    _tile_arr = None

    return (_y-_ymin), ((_y-_ymin) + _rows), (_x-_xmin), ((_x-_xmin) + _cols), _temp_arr
示例#3
0
                   "RFalbedo_deciduous_fraction_treecover_50000_cutoff_5_deg1_20200501T185635_summer.pickle",
                   "RFalbedo_deciduous_fraction_treecover_50000_cutoff_5_deg1_20200501T185635_fall.pickle")

    picklefiles = [pickle_dir + picklefile for picklefile in picklefiles]

    band_name = 'spr_albedo'


    outfile = outdir + Handler(Handler(infile).basename).add_to_filename('_output3')

    Handler(outfile).file_remove_check()

    # raster contains three bands: 1) decid 2) tree cover 3) land extent mask.
    # all the bands are in integer format
    raster = Raster(infile)
    raster.initialize()
    raster.bnames = ['decid', 'treecover']

    raster.get_stats(True)

    Opt.cprint(raster.shape)

    regressor = RFRegressor.load_from_pickle(picklefiles[0])

    Opt.cprint(regressor)

    Opt.cprint(regressor.adjustment)

    out_raster = RFRegressor.regress_raster(regressor,
                                            raster,
                                            output_type='mean',
示例#4
0
    Opt.cprint(rf_regressor1)
    Opt.cprint(rf_regressor2)

    bandnames1_ = rf_regressor1.features
    Opt.cprint('Bands 1 : ')
    Opt.cprint(bandnames1_)

    bandnames2_ = rf_regressor2.features
    Opt.cprint('Bands 2 : ')
    Opt.cprint(bandnames2_)

    bandnames_all = bandnames1_ + bandnames2_

    # get raster metadata
    ras = Raster(infile)
    ras.initialize()

    tile_size = min([ras.shape[1], ras.shape[2]])

    Opt.cprint(ras.shape)
    Opt.cprint(ras)

    bandnames = ras.bnames
    Opt.cprint('Raster bands: "' + '", "'.join(bandnames) + '"')

    band_order = Sublist(bandnames).sublistfinder(bandnames_all)
    Opt.cprint('Band order: ' + ', '.join([str(b) for b in band_order]))

    # re-initialize raster
    ras.initialize(get_array=True, band_order=band_order)
示例#5
0
    filelist = list(all_files[i] for i in file_loc_on_list.tolist())

    for file_ in filelist:
        Opt.cprint(file_)

    Opt.cprint(outfile)

    mraster = MultiRaster(filelist=filelist)

    Opt.cprint(mraster)

    ls_vrt = mraster.layerstack(return_vrt=True, outfile=outfile)

    lras = Raster('tmp_layerstack')
    lras.datasource = ls_vrt
    lras.initialize()

    xmin, xmax, ymin, ymax = lras.get_pixel_bounds(image_bounds, 'crs')

    lras.transform = (image_bounds[0],
                      lras.transform[1],
                      lras.transform[2],
                      image_bounds[3],
                      lras.transform[4],
                      lras.transform[5])

    lras.shape = [1, (ymax-ymin), (xmax-xmin)]

    lras.make_tile_grid(*tile_specs)
    print(len(lras.tile_grid))