示例#1
0
class Geocoder():
    """
    A class that provides functionality for getting street stretches, etc.

    Exposes the following functions:

        normalize_street_name
            Returns a street in the format the LION and Geosupport use.
        get_street_code
            Given a street name, return the street code.
        street_code_exists
            Return whether the given street code exists in LION's streets
        autocomplete
            Given a text search, return possible street name matches.
        address
            Find the street segment and side of street of an address.
    """
    def __init__(self, lion_version, crs='epsg:2263',
                 lion_loader=load_lion_gdf, force_rebuild=False,
                 network_type='cscl',
                 include_spatial_index=False, spatial_index_crs=None, **kwargs):

        self.crs = crs
        self.lion_version = lion_version.lower()
        self.lion_loader = lion_loader
        self.force_rebuild = force_rebuild
        self.cache_path = MICHI_HOME / self.lion_version / 'geocoder'
        if not self.cache_path.exists():
            self.cache_path.mkdir(parents=True)

        # ensure CRS parameters are parsable before instantiation
        pyproj.crs.CRS(crs)
        if spatial_index_crs:
            pyproj.crs.CRS(spatial_index_crs)

        # Instantiate Geosupport
        try:
            if geosupport_version is None:
                geosupport_version = self.lion_version
            self.geosupport = Geosupport(geosupport_version=version)
        except:
            # Use default geosupport
            self.geosupport = Geosupport()
            warn(
                "Using default Geosupport. "
                "May not match LION %s" % self.lion_version
            )

        (
            self.lion_df, self.nodes_df,
            self.lion_segments, self.streets,
            self.street_code_map
        ) = self._load_lion_data()

        self.street_names = self._build_search_data()

        self.network_type = network_type
        if network_type == 'cscl':
            self.segment_column = 'physical_id'
            self.segment_dict = 'cscl_segments'
        elif network_type == 'lion':
            self.segment_column = 'segment_id'
            self.segment_dict = 'lion_segments'

        # A regex to parse geometry strings, to be used by `self.parse_geometry`
        self.geometry_regex = re.compile(r'([a-z_]*):*(\d+)([A-Z]{0,1})')

        (
            self.cscl_segments_df, self.cscl_segments,
            self.node_network, self.segment_network,
            self.nodes_df, self.nodes
        ) = self._build_networks(self.network_type)

        self.segments = getattr(self, self.segment_dict)

        # SearchMixin
        # TODO Don't skip this, testing!
        #super().__init__(clear_cache=clear_cache, **kwargs)

        # get cache key to uniquely recognize spatial indexes
        #cache_key = get_cache_key(('_load_lion_data',) + (self,) + ({},))

        # load spatial indexes
        self.include_spatial_index = include_spatial_index
        self.spatial_index_crs = spatial_index_crs

        if self.include_spatial_index:
            self.lion_index = _get_spatial_index(
                self.lion_df, self.crs, self.spatial_index_crs, lion_version,
                'segment_index', 'segment_id'
            )
            self.node_index = _get_spatial_index(
                self.nodes_df, self.crs, self.spatial_index_crs, lion_version,
                'node_index', 'node'
            )

    @method_file_cache('lion.pkl')
    def _load_lion_data(self):
        print("Downloading and Building Geocoder Data...")
        #lion_df = _load_lion_df(
        #    self.lion_version, self.crs
        #)
        lion_df = self.lion_loader(self.lion_version)

        '''return (
            lion_df,# nodes_df,
            None, None, None, None
            #segments, streets,
            #street_code_map
        )'''

        lion_df = _clean_lion_df(lion_df, self.crs)

        # Create nodes_df
        nodes_df = _get_nodes_df(lion_df)

        # Get dead ends
        dead_end_nodes = _get_dead_end_nodes(nodes_df)
        nodes_df['dead_end'] = nodes_df['node'].isin(dead_end_nodes)

        # Convert to GeoDataFrame
        nodes_df = gp.GeoDataFrame(
            nodes_df, geometry='geometry', crs={'init': self.crs}
        )

        # Cache stuff for quick access
        streets = _get_streets_dict(lion_df)
        segments = _get_segments_dict(lion_df)

        # Add dead end nodes to `streets`
        dead_end_street_codes = self._get_dead_end_street_codes()
        streets['dead_end'] = {'nodes': dead_end_nodes, 'df': None}

        # Create a mapping of street codes to internal street codes
        street_code_map = dict(lion_df[[
            'original_street_code', 'street_code'
        ]].drop_duplicates().values)

        # Add dead ends to street_code_map
        street_code_map.update(dict([
            (i, 'dead_end') for i in dead_end_street_codes
        ]))

        # Add mapping from new values to themselves
        for key, value in list(street_code_map.items()):
            if value not in street_code_map:
                street_code_map[value] = value

        return (
            lion_df, nodes_df,
            segments, streets,
            street_code_map
        )

    @method_file_cache('search.pkl')
    def _build_search_data(self):
        print("Building Search Data...")

        # Create dataframe with street names for autocomplete
        street_names = self.lion_df[
            self.lion_df['feature_type'].isin(['0', '6', '8', 'A', 'W'])
        ].groupby([
            'street', 'street_code', 'borough_code'
        ]).count()['segment_id'].reset_index()

        # Add options for a dead end for each borough to the dataframe.
        dead_end_street_codes = self._get_dead_end_street_codes()
        street_names = street_names.append([{
            'street': 'DEAD END',
            'street_code': 'dead_end',
            'borough_code': street_code[0],
            'segment_id': 100
        } for street_code in dead_end_street_codes])

        # A function to get the geometry of each "street" used for the
        # centroid distance functionality of autocomplete.
        def get_geometry(street_code):
            if street_code == 'dead_end':
                return self.nodes_df[
                    self.nodes_df['node'].isin(self.streets['dead_end']['nodes'])
                ]['geometry'].unary_union

            return self.streets[street_code]['df']['geometry'].unary_union

        street_names['geometry'] = street_names['street_code'].apply(get_geometry)

        street_names = gp.GeoDataFrame(street_names.sort_values(
            'segment_id', ascending=False
        ).reset_index(drop=True))

        return street_names

    def _get_street_code(self, borough, street):
        return self.geosupport.get_street_code({
            'street_name': street, 'borough_code': borough
        })['B10SC - First Borough and Street Code']

    def _get_dead_end_street_codes(self):
        return [self._get_street_code(b, 'DEAD END') for b in BOROUGHS]

    def _get_intersection(self, street_code_1, street_code_2):
        street_code_1 = self.normalize_street_code(street_code_1)
        street_code_2 = self.normalize_street_code(street_code_2)

        return self.streets[street_code_1]['nodes'].intersection(
            self.streets[street_code_2]['nodes']
        )

    def get_street_code(self, borough, street):
        """
        Given a borough and street name, return the street code.

        Parameters
        ----------
        street : str
        borough : str
            The borough code, abbreviation or name.

        Returns
        -------
        str
            The street code

        Raises
        ------
        NotAStreetError
            If the "street" is a valid identifier in Geosupport, but isn't a
            drivable street in LION.
        StreetNameNotFoundError
            If the street name isn't recognized raise this error. The error
            has an attribute `options` with up to 10 alternate street names
            that are similar to the given one.
        """
        try:
            street_code = self.normalize_street_code(
                self._get_street_code(borough, street)
            )

            if self.street_code_exists(street_code):
                return street_code
            else:
                raise NotAStreetError(street, street_code)

        except GeosupportError as error:
            # If geosupport raised an error, include it's suggested street
            # names in the raised StreetNameNotFoundError.
            options = []
            for s in error.result['List of Street Names']:
                street_code = self.normalize_street_code(
                    self._get_street_code(borough, s)
                )
                # Only return valid streets
                if self.street_code_exists(street_code):
                    # Append the name and the code.
                    options.append((s, street_code))

            raise StreetNameNotFoundError(street, options)

    def normalize_street_code(self, street_code):
        if street_code in self.street_code_map:
            return self.street_code_map[street_code]
        street_code = str(street_code)[:6].zfill(6)
        return self.street_code_map.get(street_code, street_code)

    def street_code_exists(self, street_code):
        return self.normalize_street_code(street_code) in self.streets

    def normalize_street_name(self, street):
        """
        Return the street name normalized into the format used by LION and
        Geosupport.

        Parameters
        ----------
        street : str
            The raw street name.

        Returns
        -------
        str
        """
        return re.sub(
            r'\s+', ' ',
            self.geosupport.normalize_street_name(
                street=street
            )['First Street Name Normalized']
        )

    def autocomplete(self, text, borough=None, cross_street_code=None,
                     return_top_n=10, centroid=None):
        """
        Given a string and optional filter parameters, return the most likely
        streets.

        Parameters
        ----------
        text : str
            The street name or partial street name.
        borough : str, optional
            Optionally constrain the search to a single borough which can be
            provided as a borough code, abbreviation or full name.
        cross_street_code : str, optional
            Only return streets that intersect with the given street.
        return_top_n : int, optional
            The number of results to return. (Default 10)
        centroid : shapely.geometry.Point, optional
            A point in the same crs as geocoder.crs. If given, sort the results
            by distance from the centroid.
        """
        text = text.strip().upper()
        text_normalized = self.normalize_street_name(text)

        df = self.street_names.copy()

        if borough:
            df = df[df['borough_code'] == str(BOROUGH_CODES[str(borough)])]

        if cross_street_code:
            cross_street_code = self.normalize_street_code(cross_street_code)

            # Get all the nodes that are on the given street code.
            nodes = self.nodes_df[self.nodes_df['node'].isin(
                    self.streets[cross_street_code]['nodes']
            )]

            # Get a list of street codes that intersect with those nodes.
            street_codes = nodes['street_code'].unique().tolist()

            # If any of the nodes are a dead end, add that street.
            if nodes['dead_end'].any():
                street_codes.append('dead_end')

            boroughs = nodes['borough_code'].unique()

            df = df[
                df['street_code'].isin(street_codes) &
                df['borough_code'].isin(boroughs) # Handles the extra dead ends
            ]

        query = (
            # Starts with the text
            df['street'].str.startswith(text) |
            df['street'].str.startswith(text_normalized) |

            # Contains the full word
            df['street'].str.contains(r'\b%s\b' % text) |
            df['street'].str.contains(r'\b%s\b' % text_normalized)
        )

        # If the string is 5 or more characters, search anywhere in the string
        if len(text) >= 5:
            query = (
                query | df['street'].str.contains(text) |
                df['street'].str.contains(text_normalized)
            )

        df = df[query].copy()

        if centroid:
            # If a cross street is given, find the distance to the place
            # where the two streets intersect, and not just to anywhere along
            # the street.
            if cross_street_code:
                func = lambda s: centroid.distance(
                    self.nodes[
                        self._get_intersection(s, cross_street_code).pop()
                    ]['geometry']
                )
                df['distance'] = df['street_code'].apply(func)
            else:
                df['distance'] = df['geometry'].distance(centroid)

            # By default, the options are sorted by "segment_id", which is the
            # number of segments with that street name in the city.
            # i.e, show common streets like "Broadway" before "Broad Street"
            # When sorting by distance, we want to take into account both
            # the distance and how common the street is.
            # The log of the count will map the count into a much smaller but
            # still increasing number. "+ e - 1" ensures that the devisor starts
            # at 1 for streets that only have 1 segment.
            # After division, if two streets are the same distance from the
            # centroid, the one with a higher count will have a lower
            # "distance." But the count won't overpower the actual distance.
            # After, the options are sorted by distance in ascending order.
            df['distance'] = df['distance'] / np.log(df['segment_id'] + np.e - 1)
            df = df.sort_values('distance')

        df = df.head(return_top_n)

        # Convert the resulting dataframe into a list of dictionaries
        results = []
        for i,row in df.iterrows():
            results.append({
                'street': row['street'],
                'street_code': row['street_code'],
                'borough_code': row['borough_code'],
                'node': list(self._get_intersection(
                    cross_street_code, row['street_code']
                )) if cross_street_code else None
            })

        return results

    def address(self, house_number, street, borough, drivable=True):
        """
        Given an address as house number, street and borough, return the
        segment id, physical id, blockface id  and side of street of that
        address.

        Parameters
        ----------
        house_number : str or int
            The house number, including hyphens for Queens addresses.
        street : str
        borough : str
            The borough code, abbreviation or name.
        drivable : bool, optional
            Whether to only return drivable segments. (Default True)

        Returns
        -------
        dict
            dict of segment id, physical id, blockface id  and side of street
        """
        street_code = self._get_street_code(borough, street)
        street_normalized = self.normalize_street_name(street)

        # Create a list of possible geographic identifiers for this address.
        # Sometimes the physical location of a building is not reflected
        # in its address, so we'll use GeoSupport to identify other options.
        # The first one is simply the house number and street code.
        lgis = [(house_number, street_code)]

        # Then pass the address to GeoSupport and iterate through its
        # list of geographic identifiers and add all of them.
        for lgi in self.geosupport.address(
            borough=borough, street=str(house_number) + ' ' + street_normalized
        )['LIST OF GEOGRAPHIC IDENTIFIERS']:
            lgis.append((
                lgi['High House Number'],
                lgi['Borough Code'] + lgi['5-Digit Street Code']
            ))

        # Eliminate generic segments and, if drivable is True, only include
        # drivable segments.
        df = self.lion_df[
            (
                self.lion_df['traffic_direction'].isin(['W', 'A', 'T'])
                if drivable else True
            ) & (~self.lion_df['segment_type'].isin(['G']))
        ]

        # A function to determine if an address is on the given side of the
        # street.
        def same_parity(a, b):
            return (a % 2) == (b % 2)

        for house, street_code in lgis:
            # First, normalize the house number.
            if type(house) == str:
                if '-' in house:
                    if street_code[0] == '4':
                        # If the street is in Queens and the number contains
                        # a hyphen, then convert it into the format tha LION
                        # uses by multiplying the first part by 1000 and adding
                        # the second.
                        a,b = house.split('-')
                        house = 1000*int(a) + int(b)
                    else:
                        # If not Queens, treat it as a range and use the first.
                        house = int(house.split('-')[0])
                else:
                    house = int(house)

            # Get a dataframe of the segments that could match the given
            # street code and house number.
            segments = df[
                (df['original_street_code'] == street_code[:6]) &
                (
                    (
                        (df['from_left'] <= house) & (df['to_left'] >= house) &
                        same_parity(df['from_left'], house)
                    ) | (
                        (df['from_right'] <= house) & (df['to_right'] >= house) &
                        same_parity(df['from_right'], house)
                    )
                )
            ]

            # If there are matches, check whether the address matches the
            # left or right side.
            for i,row in segments.iterrows():
                if (row['from_left'] != 0) and (
                    (row['from_left'] % 2) == (house % 2)
                ):
                    return {
                        'segment_id': row['segment_id'],
                        'physical_id': row['physical_id'],
                        'blockface_id': row['left_blockface_id'],
                        'side': 'L'
                    }
                if (row['from_right'] != 0) and (
                    (row['from_right'] % 2) == (house % 2)
                ):
                    return {
                        'segment_id': row['segment_id'],
                        'physical_id': row['physical_id'],
                        'blockface_id': row['right_blockface_id'],
                        'side': 'R'
                    }

    def _get_terminators(self, nodes):
        """
        Terminator segments are segments which exist at the point when a
        multi-roadbed street becomes a single roadbed.

        Geocoder uses these to prevent u-turns from one roadbed onto another
        at these nodes where the terminator segments meet.

        This function returns a dictionary which has a key for each
        physical_id that is a terminator where the value is a set of all
        terminator physical_ids which connect to that segment.

        Parameters
        ----------
        nodes : dict
            The nodes dictionary from `_get_nodes_dict`

        Returns
        -------
        dict of physical_id -> set of physical_ids
        """
        terminators = {}

        for node in nodes:
            # Get all the physical_ids that are terminator segments that
            # connect to the given nodes.
            pids = [
                self.lion_segments[sid]['physical_id']
                for sid in nodes[node]['segments']
                if self.lion_segments[sid]['segment_type'] == 'T'
            ]

            # Create a set of the physical_ids connected to this node and then
            # update that group with any other existing groups that overlap.
            group = set(pids)
            for p in pids:
                if p in terminators:
                    group.update(terminators[p])

            # TODO: I think this is supposed to be
            #   `for p in group:`
            # instead of in pids.
            for p in pids: # Add the group to the dictionary of terminators.
                terminators[p] = group

        return terminators

    @method_file_cache('network.pkl')
    def _build_networks(self, network_type):
        print("Building Routing Networks...")

        # Create a basic network for both LION and CSCL
        # This is needed to create the physical_id geometry, at least.
        lion_network = build_monodirectional_network(self.lion_df, 'segment_id')
        cscl_network = build_monodirectional_network(self.lion_df, 'physical_id')
        drop_internal_nodes(cscl_network)

        # Update nodes with whether it's an internal node or not.
        cscl_nodes = [n.split(':')[1] for n in cscl_network.nodes if 'node' in n]
        self.nodes_df['internal'] = ~self.nodes_df['node'].isin(cscl_nodes)
        nodes = _get_nodes_dict(self.nodes_df)

        def merge_geometry(group):
            """
            Merge the segments into a physical ID to get attributes that depend
            on the order of the segments.

            Parameters
            ----------
            group : pandas.DataFrame
                A subset of lion_df with all the segments of a single physical_id

            Returns
            -------
            shapely.LineString
            """
            # Get all the segments and nodes that are part of the given physical_id
            nodes = set(
                ['segment_id:%s' % i for i in group['segment_id']] +
                ['node:%s' % i for i in group['node_from']] +
                ['node:%s' % i for i in group['node_to']]
            )

            # Get a subgraph of lion_network with all the nodes and segments
            # and all the edges between them.
            subnetwork = lion_network.subgraph(nodes)

            # Next, order all of the nodes in subnetwork so that the geometry
            # will be in the right order to be merged.
            try:
                # Most physical_ids can be sorted via topological_sort
                stretch = nx.topological_sort(subnetwork)
                segments = [s.split(':')[1] for s in stretch if 'segment_id' in s]
            except:
                # But a few physical ids have cicrles/cycles, so in that case,
                # get an order by trying all combinations of start/end point
                # and use the first one that contains all the nodes.
                for a, b in itertools.combinations(nodes, 2):
                    try:
                        stretch = nx.shortest_path(subnetwork, a, b)
                        if len(stretch) == len(nodes):
                            break
                    except:
                        pass
                segments = [s.split(':')[1] for s in stretch if 'segment_id' in s]

            # Create a LineString from the individual coordinates in the
            # ordered list of segments.
            coords = [
                c for s in segments
                for c in self.lion_segments[s]['geometry'].coords
            ]
            coords = drop_consecutive_duplicates(coords)
            return LineString(coords)

        geometry = self.lion_df.groupby('physical_id').apply(
            merge_geometry
        ).rename('geometry')

        terminators = self._get_terminators(nodes)
        terminators = self.lion_df.groupby('physical_id').apply(
            lambda g: terminators.get(g.iloc[0]['physical_id'])
        ).rename('terminator_group')

        # Create the DataFrame and dict for physical_ids
        cscl_segments_df = _get_cscl_segments_df(self.lion_df)
        cscl_segments_df = cscl_segments_df.join(
            geometry, how='left'
        ).join(terminators, how='left')
        cscl_segments = cscl_segments_df.to_dict('index')

        if self.network_type == 'cscl':
            segments = cscl_segments
            network = cscl_network
        else:
            segments = self.lion_segments
            network = lion_network

        # Create a directional network of the given type
        # This network still has nodes
        node_network = build_directional_network(network, segments)

        # Create a network where segments connect directly to segments.
        segment_network = build_segment_network(
            node_network, default_cost_function(
                segments, nodes, turn_cost=100000, intersection_cost=0
            )
        )

        return (
            cscl_segments_df, cscl_segments, node_network, segment_network,
            self.nodes_df, nodes
        )

    def get_segment(self, segment):
        """
        Given a segment_id string, return a dictionary from `self.segments`.

        Parameters
        ----------
        segment : str
            A segment_id in a format accepted by `parse_geometry`.

        Returns
        -------
        dict
        """
        type_, id_, side = self.geometry_regex.match(segment).groups()
        return self.segments.get(id_, None)

    def normalize_segment_id(self, id_):
        if self.segment_column == 'segment_id':
            return id_.zfill(7)
        else:
            return str(int(id_))

    def parse_geometry(self, geometry):
        """
        Parse a "geometry" string and return a standardize geometry string,
        the type, id, and side of street.

        A geometry string is the type of geometry, followed by the id and
        optionally a side of street.

        For example:

            node:0055555M
            segment_id:0005555L
            physical_id:555R

        Parameters
        ----------
        geometry : str

        Returns
        -------
        geometry : str
            The geometry in a standardized format
        type : str
            node, segment_id or physical_id
        id : str
            The geometry ID
        side_of_street : str
            A letter for the side of street. One of: '', 'R', 'L', 'E', 'B'
        """
        try:
            type_, id_, letter = self.geometry_regex.match(geometry).groups()
            if not type_:
                if (id_.zfill(7) + letter) in self.nodes:
                    type_ = 'node'
                elif self.normalize_segment_id(id_) in self.segments:
                    type_ = self.segment_column

            assert type_ in ['node', self.segment_column]
            if type_ == 'node':
                id_ = id_.zfill(7) + letter
                letter = ''
                assert id_ in self.nodes
            else:
                assert letter in ['', 'R', 'L', 'E', 'B']
                id_ = self.normalize_segment_id(id_)
                assert id_ in self.segments


            return '%s:%s%s' % (type_, id_, letter), type_, id_, letter
        except:
            raise ValueError("Unrecognized geometry: %s" % geometry)


    def get_street_stretch_by_geometry(self, geometry_1, geometry_2,
                                       on_street_code=None):
        """
        Given two endpoint geometries, return a shortest path street stretch.
        Geometries can either be nodes or segments or a combination of the two.

        For nodes, if an optional on_street_code is provided, only start and
        end on streets on the given street code.

        This function works by adding temporary nodes to the Geocoder's
        segment_network called START and END. START connects to
        geometry_1 and END connects to geometry_2.

        Then find a shortest path from START to END and return it as a
        StreetStretch.

        This function will always return a result if there is a possible path
        from geometry_1 to geometry_2 even if it is not actually a "stretch"
        (not all along one on street). You can use the StreetStretch object's
        attributes to determine if the stretch is valid for your use case.

        Parameters
        ----------
        geometry_1, geometry_2 : str
            Start and endpoints for the stretch
        on_street_code : str, optional
            An on street code to start and end on.

        Returns
        -------
        StreetStretch
        """
        geometry_1, type_1, id_1, side_1 = self.parse_geometry(geometry_1)
        geometry_2, type_2, id_2, side_2 = self.parse_geometry(geometry_2)

        # Add start node (START -> geometry_1)
        if type_1 == 'node':
            # Since we will be routing on the segment network, for nodes connect
            # START to all segments that the node connects to.
            for segment in self.node_network[geometry_1]:
                # If on_street_code is provided, only connect to segments
                # on the given street.
                if (
                    (on_street_code is None) or
                    (on_street_code in self.get_segment(segment)['street_code'])
                ):
                    self.segment_network.add_edge('START', segment, weight=1)
        elif type_1 == self.segment_column:
            # For segments, connect the segment itself.
            # If side isn't given, allow both sides.
            if not side_1:
                for side in ['L', 'R']:
                    self.segment_network.add_edge('START', geometry_1 + side, weight=1)
            else:
                self.segment_network.add_edge('START', geometry_1, weight=1)

        # Add End Node in the same fashion, but connecting geometry_2 -> END
        if type_2 == 'node':
            for segment in self.node_network.predecessors(geometry_2):
                if (
                    (on_street_code is None) or
                    (on_street_code in self.get_segment(segment)['street_code'])
                ):
                    self.segment_network.add_edge(segment, 'END', weight=1)
        elif type_2 == self.segment_column:
            if not side_2:
                for side in ['L', 'R']:
                    self.segment_network.add_edge(geometry_2 + side, 'END', weight=1)
            else:
                self.segment_network.add_edge(geometry_2, 'END', weight=1)

        try:
            path = nx.bidirectional_dijkstra(
                self.segment_network, 'START', 'END', weight='weight'
            )[1]
            return StreetStretch(self, path[1:-1])
        finally:
            # Even if there's an error, make sure to remove START and END from
            # the network.
            for n in ['START', 'END']:
                self.segment_network.remove_node(n)

    def get_street_stretch_by_code(self, on_street_code, from_street_code,
                                   to_street_code):
        """
        Given an on street code, from street code and to street code,
        return a list of possible stretches.

        There can be more than one because sometime streets intersect multiple
        times.

        Parameters
        ----------
        on_street_code, from_street_code, to_street_code : str
            The street codes of the on, from and to streets

        Returns
        -------
        list of StreetStretch
            A list of stretches for all combinations of from and to
            intersections sorted from shortest to longest.
        """
        on_street_code = self.normalize_street_code(on_street_code)
        from_street_code = self.normalize_street_code(from_street_code)
        to_street_code = self.normalize_street_code(to_street_code)

        nodes_from = self._get_intersection(on_street_code, from_street_code)
        nodes_to = self._get_intersection(on_street_code, to_street_code)

        stretches = []

        for node_from in nodes_from:
            for node_to in nodes_to:
                if node_from != node_to:
                    try:
                        stretches.append(self.get_street_stretch_by_geometry(
                            'node:' + node_from, 'node:' + node_to,
                            on_street_code=on_street_code
                        ))
                    except:
                        pass

        return sorted(stretches, key=len)

    def __str__(self):
        return "Geocoder (lion_version=%s, crs=%s, index_crs=%s)" % (
            self.lion_version, self.crs, self.spatial_index_crs
        )
示例#2
0
    def __init__(self, lion_version, crs='epsg:2263',
                 lion_loader=load_lion_gdf, force_rebuild=False,
                 network_type='cscl',
                 include_spatial_index=False, spatial_index_crs=None, **kwargs):

        self.crs = crs
        self.lion_version = lion_version.lower()
        self.lion_loader = lion_loader
        self.force_rebuild = force_rebuild
        self.cache_path = MICHI_HOME / self.lion_version / 'geocoder'
        if not self.cache_path.exists():
            self.cache_path.mkdir(parents=True)

        # ensure CRS parameters are parsable before instantiation
        pyproj.crs.CRS(crs)
        if spatial_index_crs:
            pyproj.crs.CRS(spatial_index_crs)

        # Instantiate Geosupport
        try:
            if geosupport_version is None:
                geosupport_version = self.lion_version
            self.geosupport = Geosupport(geosupport_version=version)
        except:
            # Use default geosupport
            self.geosupport = Geosupport()
            warn(
                "Using default Geosupport. "
                "May not match LION %s" % self.lion_version
            )

        (
            self.lion_df, self.nodes_df,
            self.lion_segments, self.streets,
            self.street_code_map
        ) = self._load_lion_data()

        self.street_names = self._build_search_data()

        self.network_type = network_type
        if network_type == 'cscl':
            self.segment_column = 'physical_id'
            self.segment_dict = 'cscl_segments'
        elif network_type == 'lion':
            self.segment_column = 'segment_id'
            self.segment_dict = 'lion_segments'

        # A regex to parse geometry strings, to be used by `self.parse_geometry`
        self.geometry_regex = re.compile(r'([a-z_]*):*(\d+)([A-Z]{0,1})')

        (
            self.cscl_segments_df, self.cscl_segments,
            self.node_network, self.segment_network,
            self.nodes_df, self.nodes
        ) = self._build_networks(self.network_type)

        self.segments = getattr(self, self.segment_dict)

        # SearchMixin
        # TODO Don't skip this, testing!
        #super().__init__(clear_cache=clear_cache, **kwargs)

        # get cache key to uniquely recognize spatial indexes
        #cache_key = get_cache_key(('_load_lion_data',) + (self,) + ({},))

        # load spatial indexes
        self.include_spatial_index = include_spatial_index
        self.spatial_index_crs = spatial_index_crs

        if self.include_spatial_index:
            self.lion_index = _get_spatial_index(
                self.lion_df, self.crs, self.spatial_index_crs, lion_version,
                'segment_index', 'segment_id'
            )
            self.node_index = _get_spatial_index(
                self.nodes_df, self.crs, self.spatial_index_crs, lion_version,
                'node_index', 'node'
            )
from multiprocessing import Pool, cpu_count
from sqlalchemy import create_engine
from geosupport import Geosupport, GeosupportError
from pathlib import Path
import pandas as pd
import usaddress
import json
import re
import os

g = Geosupport()


def geocode(inputs):
    bin = inputs.get('bin', '')

    try:
        geo = g['BN'](bin=bin, mode='tpad')
        #geo = g['BN'](bin=bin, mode_switch='X')
        #geo = g.BN(mode='extended', bin=bin)
        #print(geo)
    except GeosupportError as e:
        geo = e.result

    geo = geo_parser(geo)
    geo.update(inputs)
    return geo


def geo_parser(geo):
    #million_bins = ['1000000', '2000000', '3000000', '4000000', '5000000']
示例#4
0
# -*- coding: utf-8 -*-
"""
Created on Sun Dec  8 20:46:17 2019

@author: ASchwenker
"""

from geosupport import Geosupport
g = Geosupport()
g.help()
示例#5
0
 def setUpClass(cls):
     g = Geosupport()
     cls.suggest = GeosupportSuggest(g)
示例#6
0
 def setUpClass(cls):
     g = Geosupport()
     cls.suggest = GeosupportSuggest(g)
     cls.app = api.app.test_client()
示例#7
0
 def setUpClass(cls):
     cls.geosupport = Geosupport()