示例#1
0
 def test_extrapolate_rows(self):
     lons = np.arange(10).reshape((2, 5), order="F")
     lats = np.arange(10).reshape((2, 5), order="C")
     lines = np.array([2, 7])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(10)
     hcols = np.arange(24)
     satint = SatelliteInterpolator((lons, lats), (lines, cols),
                                    (hlines, hcols))
     self.assertTrue(
         np.allclose(
             satint._extrapolate_rows(satint.tie_data[0]),
             np.array([[
                 6381081.08333225, 6381639.66045187, 6372470.10269454,
                 6353590.21586788, 6325042.05851245
             ],
                       [
                           6370997., 6366146.21816553, 6351605.98629588,
                           6327412.61244969, 6293626.50067273
                       ],
                       [
                           6345786.79166939, 6327412.61244969,
                           6299445.69529922, 6261968.60390423,
                           6215087.60607344
                       ],
                       [
                           6335702.70833714, 6311919.17016336,
                           6278581.57890056, 6235791.00048604,
                           6183672.04823372
                       ]])))
示例#2
0
文件: aapp_l1b.py 项目: cuulee/satpy
    def navigate(self):
        """Return the longitudes and latitudes of the scene.
        """
        tic = datetime.now()
        lons40km = self._data["pos"][:, :, 1] * 1e-4
        lats40km = self._data["pos"][:, :, 0] * 1e-4

        try:
            from geotiepoints import SatelliteInterpolator
        except ImportError:
            logger.warning("Could not interpolate lon/lats, "
                           "python-geotiepoints missing.")
            self.lons, self.lats = lons40km, lats40km
        else:
            cols40km = np.arange(24, 2048, 40)
            cols1km = np.arange(2048)
            lines = lons40km.shape[0]
            rows40km = np.arange(lines)
            rows1km = np.arange(lines)

            along_track_order = 1
            cross_track_order = 3

            satint = SatelliteInterpolator(
                (lons40km, lats40km), (rows40km, cols40km), (rows1km, cols1km),
                along_track_order, cross_track_order)
            self.lons, self.lats = satint.interpolate()
            logger.debug("Navigation time %s", str(datetime.now() - tic))
示例#3
0
 def test_fill_col_borders(self):
     lons = np.arange(10).reshape((2, 5), order="F")
     lats = np.arange(10).reshape((2, 5), order="C")
     lines = np.array([2, 7])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(10)
     hcols = np.arange(24)
     satint = SatelliteInterpolator((lons, lats), (lines, cols),
                                    (hlines, hcols))
     satint._fill_col_borders()
     self.assertTrue(
         np.allclose(
             satint.tie_data[0],
             np.array([[
                 6372937.31273379, 6370997., 6366146.21816553,
                 6351605.98629588, 6327412.61244969, 6293626.50067273,
                 6286869.27831734
             ],
                       [
                           6353136.46335726, 6345786.79166939,
                           6327412.61244969, 6299445.69529922,
                           6261968.60390423, 6215087.60607344,
                           6205711.40650728
                       ]])))
     self.assertTrue(
         np.allclose(satint.col_indices, np.array([0, 2, 7, 12, 17, 22,
                                                   23])))
示例#4
0
    def navigate(self):
        """Return the longitudes and latitudes of the scene.
        """
        tic = datetime.now()
        lons40km = self._data["pos"][:, :, 1] * 1e-4
        lats40km = self._data["pos"][:, :, 0] * 1e-4

        try:
            from geotiepoints import SatelliteInterpolator
        except ImportError:
            logger.warning("Could not interpolate lon/lats, "
                           "python-geotiepoints missing.")
            self.lons, self.lats = lons40km, lats40km
        else:
            cols40km = np.arange(24, 2048, 40)
            cols1km = np.arange(2048)
            lines = lons40km.shape[0]
            rows40km = np.arange(lines)
            rows1km = np.arange(lines)

            along_track_order = 1
            cross_track_order = 3

            satint = SatelliteInterpolator(
                (lons40km, lats40km), (rows40km, cols40km), (rows1km, cols1km),
                along_track_order, cross_track_order)
            self.lons, self.lats = satint.interpolate()
            logger.debug("Navigation time %s", str(datetime.now() - tic))
示例#5
0
    def upsample_geolocation(self, dsid, info):
        """Upsample the geolocation (lon,lat) from the tiepoint grid."""
        from geotiepoints import SatelliteInterpolator
        # Read the fields needed:
        col_indices = self.nc['nx_reduced'].values
        row_indices = self.nc['ny_reduced'].values
        lat_reduced = self.scale_dataset(dsid, self.nc['lat_reduced'], info)
        lon_reduced = self.scale_dataset(dsid, self.nc['lon_reduced'], info)

        shape = (self.nc['y'].shape[0], self.nc['x'].shape[0])
        cols_full = np.arange(shape[1])
        rows_full = np.arange(shape[0])

        satint = SatelliteInterpolator(
            (lon_reduced.values, lat_reduced.values),
            (row_indices, col_indices), (rows_full, cols_full))

        lons, lats = satint.interpolate()
        self.cache['lon'] = xr.DataArray(lons,
                                         attrs=lon_reduced.attrs,
                                         dims=['y', 'x'])
        self.cache['lat'] = xr.DataArray(lats,
                                         attrs=lat_reduced.attrs,
                                         dims=['y', 'x'])

        return
示例#6
0
    def test_extrapolate_cols(self):
        lons = np.arange(10).reshape((2, 5), order="F")
        lats = np.arange(10).reshape((2, 5), order="C")
        lines = np.array([2, 7])
        cols = np.array([2, 7, 12, 17, 22])
        hlines = np.arange(10)
        hcols = np.arange(24)
        satint = SatelliteInterpolator(
            (lons, lats), (lines, cols), (hlines, hcols))

        self.assertTrue(np.allclose(satint._extrapolate_cols(satint.tie_data[0]),
                                    TIES_EXP2))
示例#7
0
 def test_fill_col_borders(self):
     lons = np.arange(10).reshape((2, 5), order="F")
     lats = np.arange(10).reshape((2, 5), order="C")
     lines = np.array([2, 7])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(10)
     hcols = np.arange(24)
     satint = SatelliteInterpolator(
         (lons, lats), (lines, cols), (hlines, hcols))
     satint._fill_col_borders()
     self.assertTrue(np.allclose(satint.tie_data[0], TIES_EXP3))
     self.assertTrue(np.allclose(satint.col_indices,
                                 np.array([0,  2,  7, 12, 17, 22, 23])))
示例#8
0
 def test_extrapolate_cols(self):
     lons = np.arange(10).reshape((2, 5), order="F")
     lats = np.arange(10).reshape((2, 5), order="C")
     lines = np.array([2, 7])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(10)
     hcols = np.arange(24)
     satint = SatelliteInterpolator((lons, lats), (lines, cols), (hlines, hcols))
     
     self.assertTrue(np.allclose(satint._extrapolate_cols(satint.tie_data[0]),
       np.array([[ 6372937.31273379,  6370997.        ,  6366146.21816553,
                   6351605.98629588,  6327412.61244969,  6293626.50067273,
                   6286869.27831734],
                 [ 6353136.46335726,  6345786.79166939,  6327412.61244969,
                   6299445.69529922,  6261968.60390423,  6215087.60607344,
                   6205711.40650728]])))
示例#9
0
文件: hrpt.py 项目: pytroll/satpy
def geo_interpolate(lons32km, lats32km):
    from geotiepoints import SatelliteInterpolator
    cols32km = np.arange(0, 2048, 32)
    cols1km = np.arange(2048)
    lines = lons32km.shape[0]
    rows32km = np.arange(lines)
    rows1km = np.arange(lines)

    along_track_order = 1
    cross_track_order = 3

    satint = SatelliteInterpolator(
        (lons32km, lats32km), (rows32km, cols32km), (rows1km, cols1km),
        along_track_order, cross_track_order)
    lons, lats = satint.interpolate()
    return lons, lats
示例#10
0
def geo_interpolate(lons32km, lats32km):
    """Interpolate geo data."""
    cols32km = np.arange(0, 2048, 32)
    cols1km = np.arange(2048)
    lines = lons32km.shape[0]
    rows32km = np.arange(lines)
    rows1km = np.arange(lines)

    along_track_order = 1
    cross_track_order = 3

    satint = SatelliteInterpolator((lons32km, lats32km), (rows32km, cols32km),
                                   (rows1km, cols1km), along_track_order,
                                   cross_track_order)
    lons, lats = satint.interpolate()
    return lons, lats
示例#11
0
    def navigate(self):
        """Get the longitudes and latitudes of the scene."""
        lons40km = self._data["pos"][:, :, 1] * 1e-4
        lats40km = self._data["pos"][:, :, 0] * 1e-4

        try:
            from geotiepoints import SatelliteInterpolator
        except ImportError:
            logger.warning("Could not interpolate lon/lats, "
                           "python-geotiepoints missing.")
            self.lons, self.lats = lons40km, lats40km
        else:
            cols40km = np.arange(24, 2048, 40)
            cols1km = np.arange(2048)
            lines = lons40km.shape[0]
            rows40km = np.arange(lines)
            rows1km = np.arange(lines)

            along_track_order = 1
            cross_track_order = 3

            satint = SatelliteInterpolator(
                (lons40km, lats40km), (rows40km, cols40km), (rows1km, cols1km),
                along_track_order, cross_track_order)
            self.lons, self.lats = delayed(satint.interpolate, nout=2)()
            self.lons = da.from_delayed(self.lons, (lines, 2048), lons40km.dtype)
            self.lats = da.from_delayed(self.lats, (lines, 2048), lats40km.dtype)
示例#12
0
 def test_extrapolate_rows(self):
     lons = np.arange(10).reshape((2, 5), order="F")
     lats = np.arange(10).reshape((2, 5), order="C")
     lines = np.array([2, 7])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(10)
     hcols = np.arange(24)
     satint = SatelliteInterpolator((lons, lats), (lines, cols), (hlines, hcols))
     self.assertTrue(np.allclose(satint._extrapolate_rows(satint.tie_data[0]),
       np.array([[ 6381081.08333225,  6381639.66045187,  6372470.10269454,
                   6353590.21586788,  6325042.05851245],
                 [ 6370997.        ,  6366146.21816553,  6351605.98629588,
                   6327412.61244969,  6293626.50067273],
                 [ 6345786.79166939,  6327412.61244969,  6299445.69529922,
                   6261968.60390423,  6215087.60607344],
                 [ 6335702.70833714,  6311919.17016336,  6278581.57890056,
                   6235791.00048604,  6183672.04823372]])))
示例#13
0
    def upsample_geolocation(self, dsid, info):
        """Upsample the geolocation (lon,lat) from the tiepoint grid"""
        from geotiepoints import SatelliteInterpolator
        # Read the fields needed:
        col_indices = self.nc['nx_reduced'].values
        row_indices = self.nc['ny_reduced'].values
        lat_reduced = self.scale_dataset(dsid, self.nc['lat_reduced'], info)
        lon_reduced = self.scale_dataset(dsid, self.nc['lon_reduced'], info)

        shape = (self.nc['y'].shape[0], self.nc['x'].shape[0])
        cols_full = np.arange(shape[1])
        rows_full = np.arange(shape[0])

        satint = SatelliteInterpolator((lon_reduced.values, lat_reduced.values),
                                       (row_indices,
                                        col_indices),
                                       (rows_full, cols_full))

        lons, lats = satint.interpolate()
        self.cache['lon'] = xr.DataArray(lons, attrs=lon_reduced.attrs, dims=['y', 'x'])
        self.cache['lat'] = xr.DataArray(lats, attrs=lat_reduced.attrs, dims=['y', 'x'])

        return
示例#14
0
 def test_fillborders(self):
     lons = np.arange(20).reshape((4, 5), order="F")
     lats = np.arange(20).reshape((4, 5), order="C")
     lines = np.array([2, 7, 12, 17])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(20)
     hcols = np.arange(24)
     satint = SatelliteInterpolator((lons, lats), (lines, cols), (hlines, hcols), chunk_size=10)
     satint.fill_borders('x', 'y')
     self.assertTrue(np.allclose(satint.tie_data[0],
       np.array([[ 6384905.78040055,  6381081.08333225,  6371519.34066148,
                   6328950.00792935,  6253610.69157758,  6145946.19489936,
                   6124413.29556372],
                 [ 6377591.95940176,  6370997.        ,  6354509.6014956 ,
                   6305151.62592155,  6223234.99818839,  6109277.14889072,
                   6086485.57903118],
                 [ 6359307.40690478,  6345786.79166939,  6311985.2535809 ,
                   6245655.67090206,  6147295.76471541,  6017604.5338691 ,
                   5991666.28769983],
                 [ 6351993.58590599,  6335702.70833714,  6294975.51441502,
                   6221857.28889426,  6116920.07132621,  5980935.48786045,
                   5953738.5711673 ],
                 [ 6338032.26190294,  6320348.4990906 ,  6276139.09205974,
                   6199670.56624433,  6091551.90273768,  5952590.38414781,
                   5924798.08042984],
                 [ 6290665.5946295 ,  6270385.16249031,  6219684.08214232,
                   6137100.75832981,  6023313.2794414 ,  5879194.72399075,
                   5850371.01290062],
                 [ 6172248.92644589,  6145476.82098957,  6078546.55734877,
                   5980676.23854351,  5852716.72120069,  5695705.57359808,
                   5664303.34407756],
                 [ 6124882.25917245,  6095513.48438928,  6022091.54743135,
                   5918106.430629  ,  5784478.09790441,  5622309.91344102,
                   5589876.27654834]])))
     self.assertTrue(np.allclose(satint.row_indices, np.array([ 0,  2,  7,  9, 10, 12, 17, 19])))
     self.assertTrue(np.allclose(satint.col_indices, np.array([ 0,  2,  7, 12, 17, 22, 23])))
示例#15
0
 def test_fill_row_borders(self):
     lons = np.arange(20).reshape((4, 5), order="F")
     lats = np.arange(20).reshape((4, 5), order="C")
     lines = np.array([2, 7, 12, 17])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(20)
     hcols = np.arange(24)
     satint = SatelliteInterpolator((lons, lats), (lines, cols), (hlines, hcols))
     satint._fill_row_borders()
     self.assertTrue(np.allclose(satint.tie_data[0],
       np.array([[ 6381081.08333225,  6371519.34066148,  6328950.00792935,
                   6253610.69157758,  6145946.19489936],
                 [ 6370997.        ,  6354509.6014956 ,  6305151.62592155,
                   6223234.99818839,  6109277.14889072],
                 [ 6345786.79166939,  6311985.2535809 ,  6245655.67090206,
                   6147295.76471541,  6017604.5338691 ],
                 [ 6270385.16249031,  6219684.08214232,  6137100.75832981,
                   6023313.2794414 ,  5879194.72399075],
                 [ 6145476.82098957,  6078546.55734877,  5980676.23854351,
                   5852716.72120069,  5695705.57359808],
                 [ 6095513.48438928,  6022091.54743135,  5918106.430629  ,
                   5784478.09790441,  5622309.91344102]])))
     self.assertTrue(np.allclose(satint.row_indices,
                                 np.array([ 0,  2,  7, 12, 17, 19])))
     satint = SatelliteInterpolator((lons, lats), (lines, cols),
                              (hlines, hcols), chunk_size=10)
     satint._fill_row_borders()
     self.assertTrue(np.allclose(satint.tie_data[0],
       np.array([[ 6381081.08333225,  6371519.34066148,  6328950.00792935,
                   6253610.69157758,  6145946.19489936],
                 [ 6370997.        ,  6354509.6014956 ,  6305151.62592155,
                   6223234.99818839,  6109277.14889072],
                 [ 6345786.79166939,  6311985.2535809 ,  6245655.67090206,
                   6147295.76471541,  6017604.5338691 ],
                 [ 6335702.70833714,  6294975.51441502,  6221857.28889426,
                   6116920.07132621,  5980935.48786045],
                 [ 6320348.4990906 ,  6276139.09205974,  6199670.56624433,
                   6091551.90273768,  5952590.38414781],
                 [ 6270385.16249031,  6219684.08214232,  6137100.75832981,
                   6023313.2794414 ,  5879194.72399075],
                 [ 6145476.82098957,  6078546.55734877,  5980676.23854351,
                   5852716.72120069,  5695705.57359808],
                 [ 6095513.48438928,  6022091.54743135,  5918106.430629  ,
                   5784478.09790441,  5622309.91344102]])))
     self.assertTrue(np.allclose(satint.row_indices,
                                 np.array([ 0,  2,  7,  9, 10, 12, 17, 19])))
示例#16
0
 def test_fill_row_borders(self):
     lons = np.arange(20).reshape((4, 5), order="F")
     lats = np.arange(20).reshape((4, 5), order="C")
     lines = np.array([2, 7, 12, 17])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(20)
     hcols = np.arange(24)
     satint = SatelliteInterpolator((lons, lats), (lines, cols),
                                    (hlines, hcols))
     satint._fill_row_borders()
     self.assertTrue(
         np.allclose(
             satint.tie_data[0],
             np.array([[
                 6381081.08333225, 6371519.34066148, 6328950.00792935,
                 6253610.69157758, 6145946.19489936
             ],
                       [
                           6370997., 6354509.6014956, 6305151.62592155,
                           6223234.99818839, 6109277.14889072
                       ],
                       [
                           6345786.79166939, 6311985.2535809,
                           6245655.67090206, 6147295.76471541,
                           6017604.5338691
                       ],
                       [
                           6270385.16249031, 6219684.08214232,
                           6137100.75832981, 6023313.2794414,
                           5879194.72399075
                       ],
                       [
                           6145476.82098957, 6078546.55734877,
                           5980676.23854351, 5852716.72120069,
                           5695705.57359808
                       ],
                       [
                           6095513.48438928, 6022091.54743135,
                           5918106.430629, 5784478.09790441,
                           5622309.91344102
                       ]])))
     self.assertTrue(
         np.allclose(satint.row_indices, np.array([0, 2, 7, 12, 17, 19])))
     satint = SatelliteInterpolator((lons, lats), (lines, cols),
                                    (hlines, hcols),
                                    chunk_size=10)
     satint._fill_row_borders()
     self.assertTrue(
         np.allclose(
             satint.tie_data[0],
             np.array(
                 [[
                     6381081.08333225, 6371519.34066148, 6328950.00792935,
                     6253610.69157758, 6145946.19489936
                 ],
                  [
                      6370997., 6354509.6014956, 6305151.62592155,
                      6223234.99818839, 6109277.14889072
                  ],
                  [
                      6345786.79166939, 6311985.2535809, 6245655.67090206,
                      6147295.76471541, 6017604.5338691
                  ],
                  [
                      6335702.70833714, 6294975.51441502, 6221857.28889426,
                      6116920.07132621, 5980935.48786045
                  ],
                  [
                      6320348.4990906, 6276139.09205974, 6199670.56624433,
                      6091551.90273768, 5952590.38414781
                  ],
                  [
                      6270385.16249031, 6219684.08214232, 6137100.75832981,
                      6023313.2794414, 5879194.72399075
                  ],
                  [
                      6145476.82098957, 6078546.55734877, 5980676.23854351,
                      5852716.72120069, 5695705.57359808
                  ],
                  [
                      6095513.48438928, 6022091.54743135, 5918106.430629,
                      5784478.09790441, 5622309.91344102
                  ]])))
     self.assertTrue(
         np.allclose(satint.row_indices,
                     np.array([0, 2, 7, 9, 10, 12, 17, 19])))
示例#17
0
def get_lonlat_into(filename, out_lons, out_lats, out_mask):
    """Read lon,lat from hdf5 file"""
    LOG.debug("Geo File = %s", filename)

    shape = out_lons.shape

    unzipped = unzip_file(filename)
    if unzipped:
        filename = unzipped

    mda = HDF5MetaData(filename).read()

    reduced_grid = False
    h5f = h5py.File(filename, 'r')

    if "column_indices" in h5f.keys():
        col_indices = h5f["column_indices"][:]
    if "row_indices" in h5f.keys():
        row_indices = h5f["row_indices"][:]
    if "nx_reduced" in h5f:
        col_indices = h5f["nx_reduced"][:]
    if "ny_reduced" in h5f:
        row_indices = h5f["ny_reduced"][:]

    for key in mda.get_data_keys():
        if ((key.endswith("lat") or key.endswith("lon")) or
            (key.endswith("lat_reduced") or key.endswith("lon_reduced"))):
            lonlat = h5f[key]
            fillvalue = lonlat.attrs["_FillValue"]
        else:
            continue

        if key.endswith("lat"):
            lonlat.read_direct(out_lats)
        elif key.endswith("lon"):
            lonlat.read_direct(out_lons)
        elif key.endswith("lat_reduced"):
            lat_reduced = lonlat[:]
            reduced_grid = True
        elif key.endswith("lon_reduced"):
            lon_reduced = lonlat[:]

    if reduced_grid:
        from geotiepoints import SatelliteInterpolator

        cols_full = np.arange(shape[1])
        rows_full = np.arange(shape[0])

        satint = SatelliteInterpolator((lon_reduced, lat_reduced),
                                       (row_indices, col_indices),
                                       (rows_full, cols_full))
        out_lons[:], out_lats[:] = satint.interpolate()

    new_mask = False
    # FIXME: this is to mask out the npp bowtie deleted pixels...
    if "NPP" in h5f.attrs['platform']:

        new_mask = np.zeros((16, 3200), dtype=bool)
        new_mask[0, :1008] = True
        new_mask[1, :640] = True
        new_mask[14, :640] = True
        new_mask[15, :1008] = True
        new_mask[14, 2560:] = True
        new_mask[1, 2560:] = True
        new_mask[0, 2192:] = True
        new_mask[15, 2192:] = True
        new_mask = np.tile(new_mask, (out_lons.shape[0] / 16, 1))

    out_mask[:] = np.logical_or(
        new_mask, np.logical_and(out_lats <= fillvalue, out_lons <= fillvalue))

    h5f.close()
    if unzipped:
        os.remove(unzipped)
示例#18
0
文件: nc_pps_l2.py 项目: ch-k/mpop
def get_lonlat_into(filename, out_lons, out_lats, out_mask):
    """Read lon,lat from hdf5 file"""
    LOG.debug("Geo File = %s", filename)

    shape = out_lons.shape

    unzipped = unzip_file(filename)
    if unzipped:
        filename = unzipped

    mda = HDF5MetaData(filename).read()

    reduced_grid = False
    h5f = h5py.File(filename, 'r')

    if "column_indices" in h5f.keys():
        col_indices = h5f["column_indices"][:]
    if "row_indices" in h5f.keys():
        row_indices = h5f["row_indices"][:]
    if "nx_reduced" in h5f:
        col_indices = h5f["nx_reduced"][:]
    if "ny_reduced" in h5f:
        row_indices = h5f["ny_reduced"][:]

    for key in mda.get_data_keys():
        if ((key.endswith("lat") or key.endswith("lon")) or
                (key.endswith("lat_reduced") or key.endswith("lon_reduced"))):
            lonlat = h5f[key]
            fillvalue = lonlat.attrs["_FillValue"]
        else:
            continue

        if key.endswith("lat"):
            lonlat.read_direct(out_lats)
        elif key.endswith("lon"):
            lonlat.read_direct(out_lons)
        elif key.endswith("lat_reduced"):
            lat_reduced = lonlat[:]
            reduced_grid = True
        elif key.endswith("lon_reduced"):
            lon_reduced = lonlat[:]

    if reduced_grid:
        from geotiepoints import SatelliteInterpolator

        cols_full = np.arange(shape[1])
        rows_full = np.arange(shape[0])

        satint = SatelliteInterpolator((lon_reduced, lat_reduced),
                                       (row_indices,
                                        col_indices),
                                       (rows_full, cols_full))
        out_lons[:], out_lats[:] = satint.interpolate()

    new_mask = False
    # FIXME: this is to mask out the npp bowtie deleted pixels...
    if "NPP" in h5f.attrs['platform']:

        new_mask = np.zeros((16, 3200), dtype=bool)
        new_mask[0, :1008] = True
        new_mask[1, :640] = True
        new_mask[14, :640] = True
        new_mask[15, :1008] = True
        new_mask[14, 2560:] = True
        new_mask[1, 2560:] = True
        new_mask[0, 2192:] = True
        new_mask[15, 2192:] = True
        new_mask = np.tile(new_mask, (out_lons.shape[0] / 16, 1))

    out_mask[:] = np.logical_or(
        new_mask, np.logical_and(out_lats <= fillvalue, out_lons <= fillvalue))

    h5f.close()
    if unzipped:
        os.remove(unzipped)
示例#19
0
def get_lonlat_into(filename, out_lons, out_lats, out_mask):
    """Read lon,lat from hdf5 file"""
    LOG.debug("Geo File = %s", filename)

    shape = out_lons.shape

    unzipped = unzip_file(filename)
    if unzipped:
        filename = unzipped

    mda = HDF5MetaData(filename).read()

    reduced_grid = False
    h5f = h5py.File(filename, 'r')

    if "column_indices" in h5f.keys():
        col_indices = h5f["column_indices"][:]
    if "row_indices" in h5f.keys():
        row_indices = h5f["row_indices"][:]
    if "nx_reduced" in h5f:
        col_indices = h5f["nx_reduced"][:]
    if "ny_reduced" in h5f:
        row_indices = h5f["ny_reduced"][:]

    for key in mda.get_data_keys():
        if ((key.endswith("lat") or key.endswith("lon")) or
                (key.endswith("lat_reduced") or key.endswith("lon_reduced"))):
            lonlat = h5f[key]
            fillvalue = lonlat.attrs["_FillValue"]
        else:
            continue

        if key.endswith("lat"):
            lonlat.read_direct(out_lats)
        elif key.endswith("lon"):
            lonlat.read_direct(out_lons)
        elif key.endswith("lat_reduced"):
            lat_reduced = lonlat[:]
            reduced_grid = True
        elif key.endswith("lon_reduced"):
            lon_reduced = lonlat[:]

    if reduced_grid:
        from geotiepoints import SatelliteInterpolator

        cols_full = np.arange(shape[1])
        rows_full = np.arange(shape[0])

        satint = SatelliteInterpolator((lon_reduced, lat_reduced),
                                       (row_indices,
                                        col_indices),
                                       (rows_full, cols_full))
        out_lons[:], out_lats[:] = satint.interpolate()

    new_mask = False
    # FIXME: this is to mask out the npp bowtie deleted pixels...
    if "NPP" in h5f.attrs['platform']:

        if shape[1] == 3200:  # M-bands:
            new_mask = np.zeros((16, 3200), dtype=bool)
            new_mask[0, :1008] = True
            new_mask[1, :640] = True
            new_mask[14, :640] = True
            new_mask[15, :1008] = True
            new_mask[14, 2560:] = True
            new_mask[1, 2560:] = True
            new_mask[0, 2192:] = True
            new_mask[15, 2192:] = True
            new_mask = np.tile(new_mask, (out_lons.shape[0] / 16, 1))
        elif shape[1] == 6400:  # I-bands:
            LOG.info(
                "PPS on I-band resolution. Mask out bow-tie deletion pixels")
            LOG.warning("Not yet supported...")
            new_mask = np.zeros((32, 6400), dtype=bool)
            new_mask[0:2, :2016] = True
            new_mask[0:2, 4384:] = True
            new_mask[2:4, :1280] = True
            new_mask[2:4, 5120:] = True
            new_mask[28:30, :1280] = True
            new_mask[28:30, 5120:] = True
            new_mask[30:32, :2016] = True
            new_mask[30:32, 4384:] = True
            new_mask = np.tile(new_mask, (out_lons.shape[0] / 32, 1))
        else:
            LOG.error("VIIRS shape not supported. " +
                      "No handling of bow-tie deletion pixels: shape = ", str(shape))

    out_mask[:] = np.logical_or(
        new_mask, np.logical_and(out_lats == fillvalue, out_lons == fillvalue))
    # new_mask, np.logical_and(out_lats <= fillvalue, out_lons <= fillvalue))

    h5f.close()
    if unzipped:
        os.remove(unzipped)
示例#20
0
def get_lonlat_into(filename, out_lons, out_lats, out_mask):
    """Read lon,lat from hdf5 file"""
    LOG.debug("Geo File = %s", filename)

    shape = out_lons.shape

    unzipped = unzip_file(filename)
    if unzipped:
        filename = unzipped

    mda = HDF5MetaData(filename).read()

    reduced_grid = False
    h5f = h5py.File(filename, 'r')

    if "column_indices" in h5f.keys():
        col_indices = h5f["column_indices"][:]
    if "row_indices" in h5f.keys():
        row_indices = h5f["row_indices"][:]
    if "nx_reduced" in h5f:
        col_indices = h5f["nx_reduced"][:]
    if "ny_reduced" in h5f:
        row_indices = h5f["ny_reduced"][:]

    for key in mda.get_data_keys():
        if ((key.endswith("lat") or key.endswith("lon")) or
            (key.endswith("lat_reduced") or key.endswith("lon_reduced"))):
            lonlat = h5f[key]
            fillvalue = lonlat.attrs["_FillValue"]
        else:
            continue

        if key.endswith("lat"):
            lonlat.read_direct(out_lats)
        elif key.endswith("lon"):
            lonlat.read_direct(out_lons)
        elif key.endswith("lat_reduced"):
            lat_reduced = lonlat[:]
            reduced_grid = True
        elif key.endswith("lon_reduced"):
            lon_reduced = lonlat[:]

    if reduced_grid:
        from geotiepoints import SatelliteInterpolator

        cols_full = np.arange(shape[1])
        rows_full = np.arange(shape[0])

        satint = SatelliteInterpolator((lon_reduced, lat_reduced),
                                       (row_indices, col_indices),
                                       (rows_full, cols_full))
        out_lons[:], out_lats[:] = satint.interpolate()

    new_mask = False
    # FIXME: this is to mask out the npp bowtie deleted pixels...
    # if "NPP" in h5f.attrs['platform']:
    if h5f.attrs['platform'] in VIIRS_PLATFORMS:

        if shape[1] == 3200:  # M-bands:
            new_mask = np.zeros((16, 3200), dtype=bool)
            new_mask[0, :1008] = True
            new_mask[1, :640] = True
            new_mask[14, :640] = True
            new_mask[15, :1008] = True
            new_mask[14, 2560:] = True
            new_mask[1, 2560:] = True
            new_mask[0, 2192:] = True
            new_mask[15, 2192:] = True
            new_mask = np.tile(new_mask, (out_lons.shape[0] / 16, 1))
        elif shape[1] == 6400:  # I-bands:
            LOG.info(
                "PPS on I-band resolution. Mask out bow-tie deletion pixels")
            LOG.warning("Not yet supported...")
            new_mask = np.zeros((32, 6400), dtype=bool)
            new_mask[0:2, :2016] = True
            new_mask[0:2, 4384:] = True
            new_mask[2:4, :1280] = True
            new_mask[2:4, 5120:] = True
            new_mask[28:30, :1280] = True
            new_mask[28:30, 5120:] = True
            new_mask[30:32, :2016] = True
            new_mask[30:32, 4384:] = True
            new_mask = np.tile(new_mask, (out_lons.shape[0] / 32, 1))
        else:
            LOG.error(
                "VIIRS shape not supported. " +
                "No handling of bow-tie deletion pixels: shape = ", str(shape))

    out_mask[:] = np.logical_or(
        new_mask, np.logical_and(out_lats == fillvalue, out_lons == fillvalue))
    # new_mask, np.logical_and(out_lats <= fillvalue, out_lons <= fillvalue))

    h5f.close()
    if unzipped:
        os.remove(unzipped)
示例#21
0
    def load(self, satscene, *args, **kwargs):
        """Read data from file and load it into *satscene*.
        """
        lonlat_is_loaded = False

        geofilename = kwargs.get('geofilename')
        prodfilename = kwargs.get('filename')

        products = []
        if "CTTH" in satscene.channels_to_load:
            products.append("ctth")
        if "CT" in satscene.channels_to_load:
            products.append("cloudtype")
        if "CMA" in satscene.channels_to_load:
            products.append("cloudmask")
        if "PC" in satscene.channels_to_load:
            products.append("precipclouds")
        if "CPP" in satscene.channels_to_load:
            products.append("cpp")

        if len(products) == 0:
            return

        try:
            area_name = satscene.area_id or satscene.area.area_id
        except AttributeError:
            area_name = "satproj_?????_?????"

        # Looking for geolocation file

        conf = ConfigParser()
        conf.read(os.path.join(CONFIG_PATH, satscene.fullname + ".cfg"))

        try:
            geodir = conf.get(satscene.instrument_name + "-level3",
                              "cloud_product_geodir",
                              vars=os.environ)
        except NoOptionError:
            LOG.warning("No option 'geodir' in level3 section")
            geodir = None

        if not geofilename and geodir:
            # Load geo file from config file:
            try:
                if not satscene.orbit:
                    orbit = ""
                else:
                    orbit = satscene.orbit
                geoname_tmpl = conf.get(satscene.instrument_name + "-level3",
                                        "cloud_product_geofilename",
                                        raw=True,
                                        vars=os.environ)
                filename_tmpl = (satscene.time_slot.strftime(geoname_tmpl)
                                 % {"orbit": str(orbit).zfill(5) or "*",
                                    "area": area_name,
                                    "satellite": satscene.satname + satscene.number})

                file_list = glob.glob(os.path.join(geodir, filename_tmpl))
                if len(file_list) > 1:
                    LOG.warning("More than 1 file matching for geoloaction: "
                                + str(file_list))
                elif len(file_list) == 0:
                    LOG.warning(
                        "No geolocation file matching!: "
                        + os.path.join(geodir, filename_tmpl))
                else:
                    geofilename = file_list[0]
            except NoOptionError:
                geofilename = None

        # Reading the products

        classes = {"ctth": CloudTopTemperatureHeight,
                   "cloudtype": CloudType,
                   "cloudmask": CloudMask,
                   "precipclouds": PrecipitationClouds,
                   "cpp": CloudPhysicalProperties
                   }

        nodata_mask = False

        area = None
        lons = None
        lats = None
        chn = None
        shape = None
        read_external_geo = {}
        for product in products:
            LOG.debug("Loading " + product)

            if isinstance(prodfilename, (list, tuple, set)):
                for fname in prodfilename:
                    kwargs['filename'] = fname
                    self.load(satscene, *args, **kwargs)
                return
            elif (prodfilename and
                  os.path.basename(prodfilename).startswith('S_NWC')):
                if os.path.basename(prodfilename).split("_")[2] == NEW_PRODNAMES[product]:
                    filename = prodfilename
                else:
                    continue
            else:
                filename = conf.get(satscene.instrument_name + "-level3",
                                    "cloud_product_filename",
                                    raw=True,
                                    vars=os.environ)
                directory = conf.get(satscene.instrument_name + "-level3",
                                     "cloud_product_dir",
                                     vars=os.environ)
                pathname_tmpl = os.path.join(directory, filename)
                LOG.debug("Path = " + str(pathname_tmpl))

                if not satscene.orbit:
                    orbit = ""
                else:
                    orbit = satscene.orbit

                filename_tmpl = (satscene.time_slot.strftime(pathname_tmpl)
                                 % {"orbit": str(orbit).zfill(5) or "*",
                                    "area": area_name,
                                    "satellite": satscene.satname + satscene.number,
                                    "product": product})

                file_list = glob.glob(filename_tmpl)
                if len(file_list) == 0:
                    product_name = NEW_PRODNAMES.get(product, product)
                    LOG.info("No " + str(product) +
                             " product in old format matching")
                    filename_tmpl = (satscene.time_slot.strftime(pathname_tmpl)
                                     % {"orbit": str(orbit).zfill(5) or "*",
                                        "area": area_name,
                                        "satellite": satscene.satname + satscene.number,
                                        "product": product_name})

                    file_list = glob.glob(filename_tmpl)

                if len(file_list) > 1:
                    LOG.warning("More than 1 file matching for " + product + "! "
                                + str(file_list))
                    continue
                elif len(file_list) == 0:
                    LOG.warning(
                        "No " + product + " matching!: " + filename_tmpl)
                    continue
                else:
                    filename = file_list[0]

            chn = classes[product]()
            chn.read(filename, lonlat_is_loaded == False)
            satscene.channels.append(chn)
            # Check if geolocation is loaded:
            if not chn.area:
                read_external_geo[product] = chn
                shape = chn.shape

        # Check if some 'channel'/product needs geolocation. If some product does
        # not have geolocation, get it from the geofilename:
        if not read_external_geo:
            LOG.info("Loading PPS parameters done.")
            return

        # Load geolocation
        interpolate = False
        if geofilename:
            geodict = get_lonlat(geofilename)
            lons, lats = geodict['lon'], geodict['lat']
            if lons.shape != shape or lats.shape != shape:
                interpolate = True
                row_indices = geodict['row_indices']
                column_indices = geodict['col_indices']

            lonlat_is_loaded = True
        else:
            LOG.warning("No Geo file specified: " +
                        "Geolocation will be loaded from product")

        if lonlat_is_loaded:
            if interpolate:
                from geotiepoints import SatelliteInterpolator

                cols_full = np.arange(shape[1])
                rows_full = np.arange(shape[0])

                satint = SatelliteInterpolator((lons, lats),
                                               (row_indices,
                                                column_indices),
                                               (rows_full, cols_full))
                # satint.fill_borders("y", "x")
                lons, lats = satint.interpolate()

            try:
                from pyresample import geometry
                lons = np.ma.masked_array(lons, nodata_mask)
                lats = np.ma.masked_array(lats, nodata_mask)
                area = geometry.SwathDefinition(lons=lons,
                                                lats=lats)
            except ImportError:
                area = None

        for chn in read_external_geo.values():
            if area:
                chn.area = area
            else:
                chn.lat = lats
                chn.lon = lons

        LOG.info("Loading PPS parameters done.")

        return
示例#22
0
    tie_lats = params['tiepoints']['lats']
    tie_cols = params['tiepoints']['cols']
    tie_rows = params['tiepoints']['rows']

    # From tie_cols and tie_rows, generate a gegulaer grid
    #fine_rows = np.arange(0, 3085, 257)
    #fine_cols = np.arange(0, 6313, 332)
    fine_rows = np.arange(0, 15436, 250)
    fine_cols = np.arange(0, 31561, 250)

    #print params
    #fine_cols = np.arange(0, data.shape[1])
    #fine_rows = np.arange(0, data.shape[0])

    interpolator = SatelliteInterpolator(
        (tie_lons, tie_lats), (tie_rows, tie_cols), (fine_rows, fine_cols), 1,
        3)
    #np.save('tie_lons.npy', tie_lons)
    #np.save('tie_lats.npy', tie_lats)
    #np.save('tie_cols.npy', tie_cols)
    #np.save('tie_rows.npy', tie_rows)
    #np.save('fine_cols.npy', fine_cols)
    #np.save('fine_rows.npy', fine_rows)
    lons, lats = interpolator.interpolate()
    print 'RESULT :'
    print lons
    print lats
    np.save('result_lons.npy', lons)
    np.save('result_lats.npy', lats)
    #print 'DATA'
    #print data.shape
示例#23
0
    def load(self, satscene, *args, **kwargs):
        """Read data from file and load it into *satscene*.
        """
        lonlat_is_loaded = False

        geofilename = kwargs.get('geofilename')
        prodfilename = kwargs.get('filename')

        products = []
        if "CTTH" in satscene.channels_to_load:
            products.append("ctth")
        if "CT" in satscene.channels_to_load:
            products.append("cloudtype")
        if "CMA" in satscene.channels_to_load:
            products.append("cloudmask")
        if "PC" in satscene.channels_to_load:
            products.append("precipclouds")
        if "CPP" in satscene.channels_to_load:
            products.append("cpp")

        if len(products) == 0:
            return

        try:
            area_name = satscene.area_id or satscene.area.area_id
        except AttributeError:
            area_name = "satproj_?????_?????"

        # Looking for geolocation file

        conf = ConfigParser()
        conf.read(os.path.join(CONFIG_PATH, satscene.fullname + ".cfg"))

        try:
            geodir = conf.get(satscene.instrument_name + "-level3",
                              "cloud_product_geodir",
                              vars=os.environ)
        except NoOptionError:
            LOG.warning("No option 'geodir' in level3 section")
            geodir = None

        if not geofilename and geodir:
            # Load geo file from config file:
            try:
                if not satscene.orbit:
                    orbit = ""
                else:
                    orbit = satscene.orbit
                geoname_tmpl = conf.get(satscene.instrument_name + "-level3",
                                        "cloud_product_geofilename",
                                        raw=True,
                                        vars=os.environ)
                filename_tmpl = (satscene.time_slot.strftime(geoname_tmpl)
                                 % {"orbit": str(orbit).zfill(5) or "*",
                                    "area": area_name,
                                    "satellite": satscene.satname + satscene.number})

                file_list = glob.glob(os.path.join(geodir, filename_tmpl))
                if len(file_list) > 1:
                    LOG.warning("More than 1 file matching for geoloaction: "
                                + str(file_list))
                elif len(file_list) == 0:
                    LOG.warning(
                        "No geolocation file matching!: " + filename_tmpl)
                else:
                    geofilename = file_list[0]
            except NoOptionError:
                geofilename = None

        # Reading the products

        classes = {"ctth": CloudTopTemperatureHeight,
                   "cloudtype": CloudType,
                   "cloudmask": CloudMask,
                   "precipclouds": PrecipitationClouds,
                   "cpp": CloudPhysicalProperties
                   }

        nodata_mask = False

        area = None
        lons = None
        lats = None
        chn = None
        shape = None
        read_external_geo = {}
        for product in products:
            LOG.debug("Loading " + product)

            if isinstance(prodfilename, (list, tuple, set)):
                for fname in prodfilename:
                    kwargs['filename'] = fname
                    self.load(satscene, *args, **kwargs)
                return
            elif (prodfilename and
                  os.path.basename(prodfilename).startswith('S_NWC')):
                if os.path.basename(prodfilename).split("_")[2] == NEW_PRODNAMES[product]:
                    filename = prodfilename
                else:
                    continue
            else:
                filename = conf.get(satscene.instrument_name + "-level3",
                                    "cloud_product_filename",
                                    raw=True,
                                    vars=os.environ)
                directory = conf.get(satscene.instrument_name + "-level3",
                                     "cloud_product_dir",
                                     vars=os.environ)
                pathname_tmpl = os.path.join(directory, filename)
                LOG.debug("Path = " + str(pathname_tmpl))

                if not satscene.orbit:
                    orbit = ""
                else:
                    orbit = satscene.orbit

                filename_tmpl = (satscene.time_slot.strftime(pathname_tmpl)
                                 % {"orbit": str(orbit).zfill(5) or "*",
                                    "area": area_name,
                                    "satellite": satscene.satname + satscene.number,
                                    "product": product})

                file_list = glob.glob(filename_tmpl)
                if len(file_list) == 0:
                    product_name = NEW_PRODNAMES.get(product, product)
                    LOG.info("No " + str(product) +
                             " product in old format matching")
                    filename_tmpl = (satscene.time_slot.strftime(pathname_tmpl)
                                     % {"orbit": str(orbit).zfill(5) or "*",
                                        "area": area_name,
                                        "satellite": satscene.satname + satscene.number,
                                        "product": product_name})

                    file_list = glob.glob(filename_tmpl)

                if len(file_list) > 1:
                    LOG.warning("More than 1 file matching for " + product + "! "
                                + str(file_list))
                    continue
                elif len(file_list) == 0:
                    LOG.warning(
                        "No " + product + " matching!: " + filename_tmpl)
                    continue
                else:
                    filename = file_list[0]

            chn = classes[product]()
            chn.read(filename, lonlat_is_loaded == False)
            satscene.channels.append(chn)
            # Check if geolocation is loaded:
            if not chn.area:
                read_external_geo[product] = chn
                shape = chn.shape

        # Check if some 'channel'/product needs geolocation. If some product does
        # not have geolocation, get it from the geofilename:
        if not read_external_geo:
            LOG.info("Loading PPS parameters done.")
            return

        # Load geolocation
        interpolate = False
        if geofilename:
            geodict = get_lonlat(geofilename)
            lons, lats = geodict['lon'], geodict['lat']
            if lons.shape != shape or lats.shape != shape:
                interpolate = True
                row_indices = geodict['row_indices']
                column_indices = geodict['col_indices']

            lonlat_is_loaded = True
        else:
            LOG.warning("No Geo file specified: " +
                        "Geolocation will be loaded from product")

        if lonlat_is_loaded:
            if interpolate:
                from geotiepoints import SatelliteInterpolator

                cols_full = np.arange(shape[1])
                rows_full = np.arange(shape[0])

                satint = SatelliteInterpolator((lons, lats),
                                               (row_indices,
                                                column_indices),
                                               (rows_full, cols_full))
                #satint.fill_borders("y", "x")
                lons, lats = satint.interpolate()

            try:
                from pyresample import geometry
                lons = np.ma.masked_array(lons, nodata_mask)
                lats = np.ma.masked_array(lats, nodata_mask)
                area = geometry.SwathDefinition(lons=lons,
                                                lats=lats)
            except ImportError:
                area = None

        for chn in read_external_geo.values():
            if area:
                chn.area = area
            else:
                chn.lat = lats
                chn.lon = lons

        LOG.info("Loading PPS parameters done.")

        return
示例#24
0
    def read(self, filename, load_lonlat=True):
        """Read product in hdf format from *filename*
        """
        LOG.debug("Filename: %s" % filename)

        is_temp = False
        if not h5py.is_hdf5(filename):
            # Try see if it is bzipped:
            import bz2
            bz2file = bz2.BZ2File(filename)
            import tempfile
            tmpfilename = tempfile.mktemp()
            try:
                ofpt = open(tmpfilename, 'wb')
                ofpt.write(bz2file.read())
                ofpt.close()
                is_temp = True
            except IOError:
                import traceback
                traceback.print_exc()
                raise IOError("Failed to read the file %s" % filename)

            filename = tmpfilename

        if not h5py.is_hdf5(filename):
            if is_temp:
                os.remove(filename)
            raise IOError("File is not a hdf5 file!" % filename)

        h5f = h5py.File(filename, "r")

        # Read the global attributes

        self._md = dict(h5f.attrs)
        self._md["satellite"] = h5f.attrs['satellite_id']
        self._md["orbit"] = h5f.attrs['orbit_number']
        self._md["time_slot"] = (timedelta(seconds=long(h5f.attrs['sec_1970']))
                                 + datetime(1970, 1, 1, 0, 0))

        # Read the data and attributes
        #   This covers only one level of data. This could be made recursive.
        for key, dataset in h5f.iteritems():
            setattr(self, key, InfoObject())
            getattr(self, key).info = dict(dataset.attrs)
            for skey, value in dataset.attrs.iteritems():
                if isinstance(value, h5py.h5r.Reference):
                    self._refs[(key, skey)] = h5f[value].name.split("/")[1]

            if type(dataset.id) is h5py.h5g.GroupID:
                LOG.warning("Format reader does not support groups")
                continue

            try:
                getattr(self, key).data = dataset[:]
                is_palette = (dataset.attrs.get("CLASS", None) == "PALETTE")
                if(len(dataset.shape) > 1 and
                   not is_palette and
                   key not in ["lon", "lat",
                               "row_indices", "column_indices"]):
                    self._projectables.append(key)
                    if self.shape is None:
                        self.shape = dataset.shape
                    elif self.shape != dataset.shape:
                        raise ValueError("Different variable shapes !")
                else:
                    self._keys.append(key)
            except TypeError:
                setattr(self, key, np.dtype(dataset))
                self._keys.append(key)

        h5f.close()

        if is_temp:
            os.remove(filename)

        if not load_lonlat:
            return

        # Setup geolocation
        # We need a no-data mask from one of the projectables to
        # mask out bow-tie deletion pixels from the geolocation array
        # So far only relevant for VIIRS.
        # Preferably the lon-lat data in the PPS VIIRS geolocation
        # file should already be masked.
        # The no-data values in the products are not only where geo-location is absent
        # Only the Cloud Type can be used as a proxy so far.
        # Adam Dybbroe, 2012-08-31
        nodata_mask = False  # np.ma.masked_equal(np.ones(self.shape), 0).mask
        for key in self._projectables:
            projectable = getattr(self,  key)
            if key in ['cloudtype']:
                nodata_array = np.ma.array(projectable.data)
                nodata_mask = np.ma.masked_equal(nodata_array, 0).mask
                break

        try:
            from pyresample import geometry
        except ImportError:
            return

        tiepoint_grid = False
        if hasattr(self, "row_indices") and hasattr(self, "column_indices"):
            column_indices = self.column_indices.data
            row_indices = self.row_indices.data
            tiepoint_grid = True

        interpolate = False
        if hasattr(self, "lon") and hasattr(self, "lat"):
            if 'intercept' in self.lon.info:
                offset_lon = self.lon.info["intercept"]
            elif 'offset' in self.lon.info:
                offset_lon = self.lon.info["offset"]
            if 'gain' in self.lon.info:
                gain_lon = self.lon.info["gain"]
            lons = self.lon.data * gain_lon + offset_lon

            if 'intercept' in self.lat.info:
                offset_lat = self.lat.info["intercept"]
            elif 'offset' in self.lat.info:
                offset_lat = self.lat.info["offset"]
            if 'gain' in self.lat.info:
                gain_lat = self.lat.info["gain"]
            lats = self.lat.data * gain_lat + offset_lat

            if lons.shape != self.shape or lats.shape != self.shape:
                # Data on tiepoint grid:
                interpolate = True
                if not tiepoint_grid:
                    errmsg = ("Interpolation needed but insufficient" +
                              "information on the tiepoint grid")
                    raise IOError(errmsg)
            else:
                # Geolocation available on the full grid:
                # We neeed to mask out nodata (VIIRS Bow-tie deletion...)
                # We do it for all instruments, checking only against the
                # nodata
                lons = np.ma.masked_array(lons, nodata_mask)
                lats = np.ma.masked_array(lats, nodata_mask)

                self.area = geometry.SwathDefinition(lons=lons, lats=lats)

        elif hasattr(self, "region") and self.region.data["area_extent"].any():
            region = self.region.data
            proj_dict = dict([elt.split('=')
                              for elt in region["pcs_def"].split(',')])
            self.area = geometry.AreaDefinition(region["id"],
                                                region["name"],
                                                region["proj_id"],
                                                proj_dict,
                                                region["xsize"],
                                                region["ysize"],
                                                region["area_extent"])

        if interpolate:
            from geotiepoints import SatelliteInterpolator

            cols_full = np.arange(self.shape[1])
            rows_full = np.arange(self.shape[0])

            satint = SatelliteInterpolator((lons, lats),
                                           (row_indices,
                                            column_indices),
                                           (rows_full, cols_full))
            #satint.fill_borders("y", "x")
            lons, lats = satint.interpolate()

            self.area = geometry.SwathDefinition(lons=lons, lats=lats)
示例#25
0
def load(scene, geofilename=None, **kwargs):
    del kwargs

    import glob

    lonlat_is_loaded = False

    products = []
    if "CTTH" in scene.channels_to_load:
        products.append("CTTH")
    if "CloudType" in scene.channels_to_load:
        products.append("CT")
    if "CMa" in scene.channels_to_load:
        products.append("CMA")
    if "PC" in scene.channels_to_load:
        products.append("PC")
    if "CPP" in scene.channels_to_load:
        products.append("CPP")

    if len(products) == 0:
        return


    try:
        area_name = scene.area_id or scene.area.area_id
    except AttributeError:
        area_name = "satproj_?????_?????"


    conf = ConfigParser.ConfigParser()
    conf.read(os.path.join(CONFIG_PATH, scene.fullname+".cfg"))
    directory = conf.get(scene.instrument_name+"-level3", "dir")
    try:
        geodir = conf.get(scene.instrument_name+"-level3", "geodir")
    except NoOptionError:
        LOG.warning("No option 'geodir' in level3 section")
        geodir = None

    filename = conf.get(scene.instrument_name+"-level3", "filename",
                        raw=True)
    pathname_tmpl = os.path.join(directory, filename)

    if not geofilename and geodir:
        # Load geo file from config file:
        try:
            if not scene.orbit:
                orbit = ""
            else:
                orbit = scene.orbit
            geoname_tmpl = conf.get(scene.instrument_name+"-level3", 
                                    "geofilename", raw=True)
            filename_tmpl = (scene.time_slot.strftime(geoname_tmpl)
                             %{"orbit": orbit.zfill(5) or "*",
                               "area": area_name,
                               "satellite": scene.satname + scene.number})

            file_list = glob.glob(os.path.join(geodir, filename_tmpl))
            if len(file_list) > 1:
                LOG.warning("More than 1 file matching for geoloaction: "
                            + str(file_list))
            elif len(file_list) == 0:
                LOG.warning("No geolocation file matching!: " + filename_tmpl)
            else:
                geofilename = file_list[0]
        except NoOptionError:
            geofilename = None


    classes = {"CTTH": CloudTopTemperatureHeight,
               "CT": CloudType,
               "CMA": CloudMask,
               "PC": PrecipitationClouds,
               "CPP": CloudPhysicalProperties
               }

    nodata_mask = False

    chn = None
    for product in products:
        LOG.debug("Loading " + product)
        if not scene.orbit:
            orbit = ""
        else:
            orbit = scene.orbit
        filename_tmpl = (scene.time_slot.strftime(pathname_tmpl)
                         %{"orbit": orbit.zfill(5) or "*",
                           "area": area_name,
                           "satellite": scene.satname + scene.number,
                           "product": product})
    
        file_list = glob.glob(filename_tmpl)
        if len(file_list) > 1:
            LOG.warning("More than 1 file matching for " + product + "! "
                        + str(file_list))
            continue
        elif len(file_list) == 0:
            LOG.warning("No " + product + " matching!: " + filename_tmpl)
            continue
        else:
            filename = file_list[0]

            chn = classes[product]()
            chn.read(filename, lonlat_is_loaded==False)
            scene.channels.append(chn)


        # Setup geolocation
        # We need a no-data mask from one of the projectables to
        # mask out bow-tie deletion pixels from the geolocation array
        # So far only relevant for VIIRS.
        # Preferably the lon-lat data in the PPS VIIRS geolocation
        # file should already be masked. 
        # The no-data values in the products are not only where geo-location is absent
        # Only the Cloud Type can be used as a proxy so far.
        # Adam Dybbroe, 2012-08-31
        if hasattr(chn, '_projectables'):
            for key in chn._projectables:
                projectable = getattr(chn,  key)
                if key in ['ct']:
                    nodata_array = np.ma.array(projectable.data)
                    nodata_mask =  np.ma.masked_equal(\
                        nodata_array, projectable.info["_FillValue"]).mask
                    break
        else:
            LOG.warning("Channel has no '_projectables' member." + 
                        " No nodata-mask set...")

    if chn is None:
        return

    # Is this safe!? AD 2012-08-25
    shape = chn.shape

    interpolate = False
    if geofilename:
        geodict = get_lonlat(geofilename)
        lons, lats = geodict['lon'], geodict['lat']
        if lons.shape != shape or lats.shape != shape:
            interpolate = True
            row_indices = geodict['row_indices']
            column_indices = geodict['column_indices']

        lonlat_is_loaded = True
    else:
        LOG.warning("No Geo file specified: " + 
                    "Geolocation will be loaded from product")


    if lonlat_is_loaded:
        if interpolate:
            from geotiepoints import SatelliteInterpolator
        
            cols_full = np.arange(shape[1])
            rows_full = np.arange(shape[0])

            satint = SatelliteInterpolator((lons, lats),
                                           (row_indices, 
                                            column_indices),
                                           (rows_full, cols_full))
            #satint.fill_borders("y", "x")
            lons, lats = satint.interpolate()

        try:
            from pyresample import geometry
            lons = np.ma.masked_array(lons, nodata_mask)
            lats = np.ma.masked_array(lats, nodata_mask)
            scene.area = geometry.SwathDefinition(lons=lons, 
                                                  lats=lats)
        except ImportError:
            scene.area = None
            scene.lat = lats
            scene.lon = lons

            
    LOG.info("Loading PPS parameters done.")
示例#26
0
 def test_fillborders(self):
     lons = np.arange(20).reshape((4, 5), order="F")
     lats = np.arange(20).reshape((4, 5), order="C")
     lines = np.array([2, 7, 12, 17])
     cols = np.array([2, 7, 12, 17, 22])
     hlines = np.arange(20)
     hcols = np.arange(24)
     satint = SatelliteInterpolator((lons, lats), (lines, cols),
                                    (hlines, hcols),
                                    chunk_size=10)
     satint.fill_borders('x', 'y')
     self.assertTrue(
         np.allclose(
             satint.tie_data[0],
             np.array(
                 [[
                     6384905.78040055, 6381081.08333225, 6371519.34066148,
                     6328950.00792935, 6253610.69157758, 6145946.19489936,
                     6124413.29556372
                 ],
                  [
                      6377591.95940176, 6370997., 6354509.6014956,
                      6305151.62592155, 6223234.99818839, 6109277.14889072,
                      6086485.57903118
                  ],
                  [
                      6359307.40690478, 6345786.79166939, 6311985.2535809,
                      6245655.67090206, 6147295.76471541, 6017604.5338691,
                      5991666.28769983
                  ],
                  [
                      6351993.58590599, 6335702.70833714, 6294975.51441502,
                      6221857.28889426, 6116920.07132621, 5980935.48786045,
                      5953738.5711673
                  ],
                  [
                      6338032.26190294, 6320348.4990906, 6276139.09205974,
                      6199670.56624433, 6091551.90273768, 5952590.38414781,
                      5924798.08042984
                  ],
                  [
                      6290665.5946295, 6270385.16249031, 6219684.08214232,
                      6137100.75832981, 6023313.2794414, 5879194.72399075,
                      5850371.01290062
                  ],
                  [
                      6172248.92644589, 6145476.82098957, 6078546.55734877,
                      5980676.23854351, 5852716.72120069, 5695705.57359808,
                      5664303.34407756
                  ],
                  [
                      6124882.25917245, 6095513.48438928, 6022091.54743135,
                      5918106.430629, 5784478.09790441, 5622309.91344102,
                      5589876.27654834
                  ]])))
     self.assertTrue(
         np.allclose(satint.row_indices,
                     np.array([0, 2, 7, 9, 10, 12, 17, 19])))
     self.assertTrue(
         np.allclose(satint.col_indices, np.array([0, 2, 7, 12, 17, 22,
                                                   23])))
示例#27
0
def load(scene, geofilename=None, **kwargs):
    del kwargs

    import glob

    lonlat_is_loaded = False

    products = []
    if "CTTH" in scene.channels_to_load:
        products.append("ctth")
    if "CloudType" in scene.channels_to_load:
        products.append("cloudtype")
    if "CMa" in scene.channels_to_load:
        products.append("cloudmask")
    if "PC" in scene.channels_to_load:
        products.append("precipclouds")
    if "CPP" in scene.channels_to_load:
        products.append("cpp")

    if len(products) == 0:
        return

    try:
        area_name = scene.area_id or scene.area.area_id
    except AttributeError:
        area_name = "satproj_?????_?????"

    conf = ConfigParser.ConfigParser()
    conf.read(os.path.join(CONFIG_PATH, scene.fullname + ".cfg"))
    directory = conf.get(scene.instrument_name + "-level3", "dir")
    try:
        geodir = conf.get(scene.instrument_name + "-level3", "geodir")
    except NoOptionError:
        LOG.warning("No option 'geodir' in level3 section")
        geodir = None

    filename = conf.get(scene.instrument_name + "-level3", "filename",
                        raw=True)
    pathname_tmpl = os.path.join(directory, filename)

    if not geofilename and geodir:
        # Load geo file from config file:
        try:
            if not scene.orbit:
                orbit = ""
            else:
                orbit = scene.orbit
            geoname_tmpl = conf.get(scene.instrument_name + "-level3",
                                    "geofilename", raw=True)
            filename_tmpl = (scene.time_slot.strftime(geoname_tmpl)
                             % {"orbit": orbit.zfill(5) or "*",
                                "area": area_name,
                                "satellite": scene.satname + scene.number})

            file_list = glob.glob(os.path.join(geodir, filename_tmpl))
            if len(file_list) > 1:
                LOG.warning("More than 1 file matching for geoloaction: "
                            + str(file_list))
            elif len(file_list) == 0:
                LOG.warning("No geolocation file matching!: " + filename_tmpl)
            else:
                geofilename = file_list[0]
        except NoOptionError:
            geofilename = None

    classes = {"ctth": CloudTopTemperatureHeight,
               "cloudtype": CloudType,
               "cloudmask": CloudMask,
               "precipclouds": PrecipitationClouds,
               "cpp": CloudPhysicalProperties
               }

    nodata_mask = False

    chn = None
    for product in products:
        LOG.debug("Loading " + product)
        if not scene.orbit:
            orbit = ""
        else:
            orbit = scene.orbit
        filename_tmpl = (scene.time_slot.strftime(pathname_tmpl)
                         % {"orbit": orbit.zfill(5) or "*",
                            "area": area_name,
                            "satellite": scene.satname + scene.number,
                            "product": product})

        file_list = glob.glob(filename_tmpl)
        if len(file_list) > 1:
            LOG.warning("More than 1 file matching for " + product + "! "
                        + str(file_list))
            continue
        elif len(file_list) == 0:
            LOG.warning("No " + product + " matching!: " + filename_tmpl)
            continue
        else:
            filename = file_list[0]

            chn = classes[product]()
            chn.read(filename, lonlat_is_loaded == False)
            scene.channels.append(chn)

        # Setup geolocation
        # We need a no-data mask from one of the projectables to
        # mask out bow-tie deletion pixels from the geolocation array
        # So far only relevant for VIIRS.
        # Preferably the lon-lat data in the PPS VIIRS geolocation
        # file should already be masked.
        # The no-data values in the products are not only where geo-location is absent
        # Only the Cloud Type can be used as a proxy so far.
        # Adam Dybbroe, 2012-08-31
        if hasattr(chn, '_projectables'):
            for key in chn._projectables:
                projectable = getattr(chn,  key)
                if key in ['cloudtype']:
                    nodata_array = np.ma.array(projectable.data)
                    nodata_mask = np.ma.masked_equal(nodata_array, 0).mask
                    break
        else:
            LOG.warning("Channel has no '_projectables' member." +
                        " No nodata-mask set...")

    if chn is None:
        return

    # Is this safe!? AD 2012-08-25
    shape = chn.shape

    interpolate = False
    if geofilename:
        geodict = get_lonlat(geofilename)
        lons, lats = geodict['lon'], geodict['lat']
        if lons.shape != shape or lats.shape != shape:
            interpolate = True
            row_indices = geodict['row_indices']
            column_indices = geodict['column_indices']

        lonlat_is_loaded = True
    else:
        LOG.warning("No Geo file specified: " +
                    "Geolocation will be loaded from product")

    if lonlat_is_loaded:
        if interpolate:
            from geotiepoints import SatelliteInterpolator

            cols_full = np.arange(shape[1])
            rows_full = np.arange(shape[0])

            satint = SatelliteInterpolator((lons, lats),
                                           (row_indices,
                                            column_indices),
                                           (rows_full, cols_full))
            #satint.fill_borders("y", "x")
            lons, lats = satint.interpolate()

        try:
            from pyresample import geometry
            lons = np.ma.masked_array(lons, nodata_mask)
            lats = np.ma.masked_array(lats, nodata_mask)
            scene.area = geometry.SwathDefinition(lons=lons,
                                                  lats=lats)
        except ImportError:
            scene.area = None
            scene.lat = lats
            scene.lon = lons

    LOG.info("Loading PPS parameters done.")
示例#28
0
    def read(self, filename, load_lonlat=True):
        """Read product in hdf format from *filename*
        """
        LOG.debug("Filename: %s" % filename)

        is_temp = False
        if not h5py.is_hdf5(filename):
            # Try see if it is bzipped:
            import bz2
            bz2file = bz2.BZ2File(filename)
            import tempfile
            tmpfilename = tempfile.mktemp()
            try:
                ofpt = open(tmpfilename, 'wb')
                ofpt.write(bz2file.read())
                ofpt.close()
                is_temp = True
            except IOError:
                import traceback
                traceback.print_exc()
                raise IOError("Failed to read the file %s" % filename)

            filename = tmpfilename
            
        if not h5py.is_hdf5(filename):
            if is_temp:
                os.remove(filename)
            raise IOError("File is not a hdf5 file!" % filename)

        h5f = h5py.File(filename, "r")

        # Read the global attributes

        self._md = dict(h5f.attrs)
        self._md["satellite"] = h5f.attrs['platform']
        self._md["orbit"] = h5f.attrs['orbit_number']
        self._md["time_slot"] = (timedelta(seconds=long(h5f.attrs['sec_1970']))
                                 + datetime(1970, 1, 1, 0, 0))

        # Read the data and attributes
        #   This covers only one level of data. This could be made recursive.
        for key, dataset in h5f.iteritems():
            setattr(self, key, InfoObject())
            getattr(self, key).info = dict(dataset.attrs)
            for skey, value in dataset.attrs.iteritems():
                if isinstance(value, h5py.h5r.Reference):
                    self._refs[(key, skey)] = h5f[value].name.split("/")[1]
                    
            if type(dataset.id) is h5py.h5g.GroupID:
                LOG.warning("Format reader does not support groups")
                continue

            try:
                getattr(self, key).data = dataset[:]
                is_palette = (dataset.attrs.get("CLASS", None) == "PALETTE")
                if(len(dataset.shape) > 1 and
                   not is_palette and
                   key not in ["lon", "lat", 
                               "row_indices", "column_indices"]):
                    self._projectables.append(key)
                    if self.shape is None:
                        self.shape = dataset.shape
                    elif self.shape != dataset.shape:
                        raise ValueError("Different variable shapes !")
                else:
                    self._keys.append(key)
            except TypeError:
                setattr(self, key, np.dtype(dataset))
                self._keys.append(key)

        h5f.close()
        
        if is_temp:
            os.remove(filename)

        if not load_lonlat:
            return


        # Setup geolocation
        # We need a no-data mask from one of the projectables to
        # mask out bow-tie deletion pixels from the geolocation array
        # So far only relevant for VIIRS.
        # Preferably the lon-lat data in the PPS VIIRS geolocation
        # file should already be masked. 
        # The no-data values in the products are not only where geo-location is absent
        # Only the Cloud Type can be used as a proxy so far.
        # Adam Dybbroe, 2012-08-31
        nodata_mask = False #np.ma.masked_equal(np.ones(self.shape), 0).mask
        for key in self._projectables:
            projectable = getattr(self,  key)
            if key in ['cloudtype']:
                nodata_array = np.ma.array(projectable.data)
                nodata_mask =  np.ma.masked_equal(nodata_array, 0).mask
                break

        try:
            from pyresample import geometry
        except ImportError:
            return

        tiepoint_grid = False
        if hasattr(self, "row_indices") and hasattr(self, "column_indices"):
            column_indices = self.column_indices.data
            row_indices = self.row_indices.data
            tiepoint_grid = True

        interpolate = False
        if hasattr(self, "lon") and hasattr(self, "lat"):
            if 'intercept' in self.lon.info:
                offset_lon = self.lon.info["intercept"]
            elif 'offset' in self.lon.info:
                offset_lon = self.lon.info["offset"]
            if 'gain' in self.lon.info:
                gain_lon = self.lon.info["gain"]
            lons = self.lon.data * gain_lon + offset_lon

            if 'intercept' in self.lat.info:
                offset_lat = self.lat.info["intercept"]
            elif 'offset' in self.lat.info:
                offset_lat = self.lat.info["offset"]
            if 'gain' in self.lat.info:
                gain_lat = self.lat.info["gain"]
            lats = self.lat.data * gain_lat + offset_lat

            if lons.shape != self.shape or lats.shape != self.shape:
                # Data on tiepoint grid:
                interpolate = True
                if not tiepoint_grid:
                    errmsg = ("Interpolation needed but insufficient" + 
                              "information on the tiepoint grid")
                    raise IOError(errmsg)
            else:
                # Geolocation available on the full grid:
                # We neeed to mask out nodata (VIIRS Bow-tie deletion...)
                # We do it for all instruments, checking only against the nodata
                lons = np.ma.masked_array(lons, nodata_mask)
                lats = np.ma.masked_array(lats, nodata_mask)

                self.area = geometry.SwathDefinition(lons=lons, lats=lats)


        elif hasattr(self, "region") and self.region.data["area_extent"].any():
            region = self.region.data
            proj_dict = dict([elt.split('=')
                              for elt in region["pcs_def"].split(',')])
            self.area = geometry.AreaDefinition(region["id"],
                                                region["name"],
                                                region["proj_id"],
                                                proj_dict,
                                                region["xsize"],
                                                region["ysize"],
                                                region["area_extent"])

        if interpolate:
            from geotiepoints import SatelliteInterpolator
        
            cols_full = np.arange(self.shape[1])
            rows_full = np.arange(self.shape[0])

            satint = SatelliteInterpolator((lons, lats),
                                           (row_indices, 
                                            column_indices),
                                           (rows_full, cols_full))
            #satint.fill_borders("y", "x")
            lons, lats = satint.interpolate()

            self.area = geometry.SwathDefinition(lons=lons, lats=lats)
示例#29
0
    tie_cols = params['tiepoints']['cols']
    tie_rows = params['tiepoints']['rows']
    
    # From tie_cols and tie_rows, generate a gegulaer grid
    #fine_rows = np.arange(0, 3085, 257)
    #fine_cols = np.arange(0, 6313, 332)
    fine_rows = np.arange(0, 15436, 250)
    fine_cols = np.arange(0, 31561, 250)
    

    #print params
    #fine_cols = np.arange(0, data.shape[1])
    #fine_rows = np.arange(0, data.shape[0])

    interpolator = SatelliteInterpolator((tie_lons, tie_lats),
                                         (tie_rows, tie_cols),
                                         (fine_rows, fine_cols),
                                         1, 3)
    #np.save('tie_lons.npy', tie_lons)
    #np.save('tie_lats.npy', tie_lats)
    #np.save('tie_cols.npy', tie_cols)
    #np.save('tie_rows.npy', tie_rows)
    #np.save('fine_cols.npy', fine_cols)
    #np.save('fine_rows.npy', fine_rows)
    lons, lats = interpolator.interpolate()
    print 'RESULT :'
    print lons
    print lats
    np.save('result_lons.npy', lons)
    np.save('result_lats.npy', lats)
    #print 'DATA'
    #print data.shape