import get_events as ge import pyqtgraph as pq import numpy as np import sys e=ge.Events(run=131) frameslist = np.array([54, 159, 1120, 1227, 1228, 3868]) e.get_frameslist(frameslist, False) n_frames = len(e.frames) for i in range(0,n_frames): pq.show(e.assemble_frame(e.frames[i])) wait = input("PRESS ENTER TO CONTINUE..")
detect_layerline = True merge_data = False #rotate_frames = False elif mode == 'tmv': min_mean = -1000000 * 25 + shooting_silicon * silicon_mean_offset max_mean = 4000000 + shooting_silicon * silicon_mean_offset #225 determine_orientation = False max_n_orientations = 500 #25 # 5 # 500 min_orientation_snr = 0 #3 # 4 # 0 detect_asymmetry = False detect_layerline = False merge_data = False #rotate_frames = True #get geom shape and beam characteristics e = ge.Events(run=run_numbers[0], det_cen=det_cen) beam_energy = e.epics.value('BEND:DMP1:400:BDES') wavelength = e.epics.value('SIOC:SYS0:ML00:AO192') det_dist = e.epics.value('CXI:DS2:MMS:06.RBV') e.events(1, 0, roi=False) m = me.merge_events(wavelength, det_dist, e.assemble_frame_w_geom(e.frames[0], False).shape, det_cen) for r in range(0, len(run_numbers)): print "Getting events for run " + str(run_numbers[r]) e = ge.Events(run=run_numbers[r], det_cen=det_cen) e.events(n_frames, start_frame, roi=True) mean_vals = np.zeros([len(e.frames), 2]) for i in range(0, len(e.frames)):
import get_events as ge import merge_events as me import frame_orientate as fo import pyqtgraph as pq import numpy as np import sys import matplotlib.pyplot as p substrate_tilt = 0 wavelength = 0 det_dist = 0 print "Getting events" e = ge.Events(run=57) #e.get_hitframes(False) # get frames identified as potential hits #hitlist = np.array([54, 622, 3868, 3873 ]) #angles 22-27 #hitlist = np.array([54, 159, 1120, 1227, 1228, 3868]) #159 #hitlist = np.array([1120,1227,3785,3873,3874]) #angles 120-135 hitlist = np.array([59]) #angles 120-135 print "Getting frames from event.. " e.get_frameslist(hitlist, False) #e.events(4351, 0, roi=False) # get all frames in run (4351 frames for run 131) r1 = [2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] r2 = [ 0.005, 0.01, 0.015, 0.02, 0.005, 0.01, 0.015, 0.02, 0.005, 0.01, 0.015, 0.02 ] r1 = [3] r2 = [0.02]
import sys import numpy as np import matplotlib.pyplot as plt import matplotlib.pylab as P import math as m import h5py from scipy.optimize import curve_fit from scipy import asarray as ar, exp import get_events as ge import pyqtgraph as pg # import data from psana e = ge.Events() e.events(1, start=12, roi=True) fd = e.do_fft(e.frames[0]) amp = fd # calculate polar sums of intensities within sector bins x, y = np.indices(amp.shape) center = np.array([(x.max() - x.min()) / 2.0, (x.max() - x.min()) / 2.0]) x = x - center[0] y = y - center[1] #print center r = np.hypot(x, y) pixelAngles = np.degrees(np.arctan2(y, x)) rayHW = 0 # pixels angleIncr = 1 # degrees