示例#1
0
def main():
    X_train, X_test, Y_train, Y_test = get_dataset()
    from get_model import get_model, save_model
    model = get_model()
    model = train_model(model, X_train, X_test, Y_train, Y_test)
    save_model(model)
    return model
示例#2
0
def main():
    batch_size_for_capture = 300
    x_train, y_train = get_dataset(batch_size_for_capture)
    model = create_model()
    model = train_model(model, x_train, y_train)
    save_model(model)
    return model
示例#3
0
def main():
    from get_dataset import get_dataset
    X, X_test, Y, Y_test = get_dataset()
    from get_model import get_model, save_model
    model = get_model(len(Y[0]))
    import numpy
    model = train_model(model, X, X_test, Y, Y_test)
    save_model(model)
    return model
示例#4
0
def train(data_name, model_name):
    X, y = get_data.get_training_xy("./tracktrack/" + data_name + "/")
    model = get_model.get_model(model_name)

    try:
        model.fit(X[0::3],
                  y[0::3],
                  verbose=1,
                  batch_size=64,
                  nb_epoch=300,
                  validation_data=(X[1::3], y[1::3]))
    except KeyboardInterrupt:
        pass

    get_model.save_model(model, model_name)
def main():
    X, X_test, Y, Y_test = get_dataset()
    model = get_model()
    model = train_model(model, X, X_test, Y, Y_test)
    save_model(model)
    return model
示例#6
0
def main():
    x, x_test, y, y_test = get_dataset()
    model = get_model()
    model = train_model(model, x, x_test, y, y_test)
    save_model(model)
    return model
示例#7
0
    plt.xlabel('Num of Epochs')
    plt.ylabel('Accuracy')
    plt.legend(['train', 'validation'], loc='best')

    plt.subplot(1, 2, 2)
    plt.plot(np.arange(1, len(history['loss']) + 1), history['loss'], 'r')
    plt.plot(np.arange(1,
                       len(history['val_loss']) + 1), history['val_loss'], 'g')
    plt.xticks(np.arange(0, epochs + 1, epochs / 10))
    plt.title('Training Loss vs. Validation Loss')
    plt.xlabel('Num of Epochs')
    plt.ylabel('Loss')
    plt.legend(['train', 'validation'], loc='best')

    plt.show()


X_train, X_test, y_train, y_test = get_dataset()

model = get_model(num_classes=5)

model = train_model(model,
                    X_train,
                    X_test,
                    y_train,
                    y_test,
                    batch_size=32,
                    num_epochs=50)

save_model(model)