示例#1
0
ctop = (abs(P[1, :] - 13) < 1e-6)
cbot = (abs(P[1, :] + 10) < 1e-6)
pidtop = np.compress(ctop, range(0, m.nbpts()))
pidbot = np.compress(cbot, range(0, m.nbpts()))
ftop = m.faces_from_pid(pidtop)
fbot = m.faces_from_pid(pidbot)
# create boundary region
NEUMANN_BOUNDARY = 1
DIRICHLET_BOUNDARY = 2
m.set_region(NEUMANN_BOUNDARY, ftop)
m.set_region(DIRICHLET_BOUNDARY, fbot)

# assembly
nbd = mfd.nbdof()
print "nbd: ", nbd
F = gf.asm_boundary_source(NEUMANN_BOUNDARY, mim, mfu, mfd,
                           np.repeat([[0], [-100], [0]], nbd, 1))
print "F.shape: ", F.shape
print "mfu.nbdof(): ", mfu.nbdof()
print "np.repeat([[0],[-100],[0]],nbd,1).shape:", np.repeat([[0], [-100], [0]],
                                                            nbd, 1).shape

K = gf.asm_linear_elasticity(mim, mfu, mfd, np.repeat([Lambda], nbd),
                             np.repeat([Mu], nbd))
print "K.info: ", K.info  # Spmat instance
print "np.repeat([Lambda], nbd).shape:", np.repeat([Lambda], nbd).shape
print "np.repeat([Mu], nbd).shape:", np.repeat([Mu], nbd).shape

# handle Dirichlet condition
(H, R) = gf.asm_dirichlet(DIRICHLET_BOUNDARY, mim, mfu, mfd,
                          mfd.eval('numpy.identity(3)'), mfd.eval('[0,0,0]'))
print "H.info: ", H.info  # Spmat instance
示例#2
0
           (mim, "Simo_Miehe", "displacement_and_plastic_multiplier_and_pressure",
            "u", "ksi", "p", "gamma0", "invCp0", _K_, _mu_, "hardening_law")

        GAMMA = gf.asm_generic(mim, 1, "gamma*Test_t", -1, "gamma", False,
                               mimd1, md.variable("gamma0"), "t", True, mfout,
                               np.zeros(mfout.nbdof()))
        GAMMA = np.transpose(gf.linsolve_mumps(mass_mat, GAMMA))
        output += (mfout, GAMMA, "plastic strain")

        mf1.export_to_vtk(
            '%s/finite_strain_plasticity_%i.vtk' % (resultspath, step),
            'ascii', *output)

        DIRMULT = -md.variable(dirichlet_multname)
        DIRMULT = np.reshape(DIRMULT, [1, DIRMULT.size])
        if symmetric and not rigid_grip:
            dfR = gf.asm_boundary_source(R_BOUNDARY, mim, mf1,
                                         mf_dirichlet_mult, DIRMULT)
            f.write(('step=%i fR=(%f,0) sR=(%f,0)\n') %
                    (step, dfR.sum(), dfR.sum() / H))
        else:
            dfR = gf.asm_boundary_source(R_BOUNDARY, mim, mfN,
                                         mf_dirichlet_mult, DIRMULT)
            f.write(('step=%i fR=(%f,%f) sR=(%f,%f)\n') %
                    (step, dfR[0::N].sum(), dfR[1::N].sum(),
                     dfR[0::N].sum() / H, dfR[1::N].sum() / H))
        f.flush()

print('OVERALL SOLUTION TIME IS %f SEC' %
      (time.process_time() - starttime_overall))
示例#3
0
                    if MM < 1e-4:
                        MM = 0.
                        pseudodynamic = False
                    elif nit <= 6:
                        MM /= 2.
                else:
                    TMP = md.interpolation("max(psi0_max,psi0)", mimd1, -1)
                    md.set_variable("psi0_max", TMP)
                    break

        out = (mfu, md.variable("u"), "Displacements", mfphi,
               md.variable("phi"), "phi")
        for i, j in [[1, 1], [2, 2], [1, 2]]:
            sigma = gf.asm_generic(mim, 1, "{sigma}({i},{j})*Test_t".format(sigma=_sigma_, i=i, j=j),
                                   -1, md, "t", True, mfout, np.zeros(mfout.nbdof()))\
                    [md.nbdof():]
            sigma = np.transpose(gf.linsolve_mumps(mass_mat, sigma))
            out += (mfout, sigma, "Cauchy Stress {i}{j}".format(i=i, j=j))

        mfout.export_to_vtk("%s/demo_phase_field_%i.vtk" % (resultspath, step),
                            *out)

        DIRMULT = -md.variable(dirmultname)
        DIRMULT = np.reshape(DIRMULT, [1, DIRMULT.size])
        dfT = gf.asm_boundary_source(T_BOUNDARY, mim, mfu,
                                     md.mesh_fem_of_variable(dirmultname),
                                     DIRMULT)
        f.write(("step=%i eps=%e fR=(%e,%e)\n") %
                (step, eps, dfT[0::N].sum(), dfT[1::N].sum()))
        f.flush()
示例#4
0
def import_fem2(sico):
    """ Build a mesh object using getfem.
    
    We use getfem++ to build the finite element model and
    to fill in the operators required by siconos:
    - the mass matrix (Mass)
    - the stiffness matrix (Stiff)
    - the matrix that links global coordinates and local coord. at contact points (H)
    
    """
    ############################
    # The geometry and the mesh
    ############################
    dimX = 10.01 ; dimY = 10.01 ; dimZ = 10.01
    stepX = 1.0 ; stepY = 1.0 ; stepZ = 1.0
    x=np.arange(0,dimX,stepX)
    y=np.arange(0,dimY,stepY)
    z=np.arange(0,dimZ,stepZ)
    m = gf.Mesh('regular simplices', x,y,z)
    m.set('optimize_structure')
    # Export the mesh to vtk
    m.export_to_vtk("BlockMesh.vtk")

    # Create MeshFem objects
    # (i.e. assign elements onto the mesh for each variable)
    mfu = gf.MeshFem(m,3) # displacement
    mfd = gf.MeshFem(m,1) # data
    mff = gf.MeshFem(m,1) # for plot von-mises
    # assign the FEM
    mfu.set_fem(gf.Fem('FEM_PK(3,1)'))
    mfd.set_fem(gf.Fem('FEM_PK(3,0)'))
    mff.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,1,0.01)'))
    # mfu.export_to_vtk("BlockMeshDispl.vtk")

    # Set the integration method
    mim = gf.MeshIm(m,gf.Integ('IM_TETRAHEDRON(5)'))

    # Summary
    print(' ==================================== \n Mesh details: ')
    print(' Problem dimension:', mfu.qdim(), '\n Number of elements: ', m.nbcvs(), '\n Number of nodes: ', m.nbpts())
    print(' Number of dof: ', mfu.nbdof(), '\n Element type: ', mfu.fem()[0].char())
    print(' ====================================')

    ###########################
    # Set the parameters
    # for the constitutive law
    ###########################
    E = 1e3  # Young modulus
    Nu = 0.3 # Poisson coef.
    # Lame coeff.
    Lambda = E*Nu/((1+Nu)*(1-2*Nu))
    Mu = E/(2*(1+Nu))
    # Density
    Rho=7800
    ############################
    # Boundaries detection
    ############################
    allPoints = m.pts()
    # Bottom points and faces 
    cbot = (abs(allPoints[2,:])  < 1e-6)
    pidbot = np.compress(cbot,list(range(0,m.nbpts())))
    fbot = m.faces_from_pid(pidbot)
    BOTTOM = 1
    m.set_region(BOTTOM,fbot)
    # Top points and faces
    ctop = (abs(allPoints[2,:]) > dimZ-stepZ)
    pidtop = np.compress(ctop,list(range(0,m.nbpts())))
    ftop = m.faces_from_pid(pidtop)
    TOP = 2
    m.set_region(TOP,ftop)
    # Top-Left points and faces
    cleft = (abs(allPoints[1,:]) < 1e-6)
    clefttop=cleft*ctop
    pidlefttop = np.compress(clefttop,list(range(0,m.nbpts())))
    flefttop = m.faces_from_pid(pidlefttop)
    pidleft = np.compress(cleft,list(range(0,m.nbpts())))
    fleft= m.faces_from_pid(pidleft)
    LEFTTOP = 3
    m.set_region(LEFTTOP,flefttop)
    LEFT = 4
    m.set_region(LEFT,fleft)
    
    ############################
    # Assembly
    ############################
    nbd =  mfd.nbdof()
    # Stiffness matrix
    sico.Stiff=gf.asm_linear_elasticity(mim, mfu, mfd,np.repeat([Lambda], nbd), np.repeat([Mu], nbd))
    # Mass matrix
    sico.Mass=Rho*gf.asm_mass_matrix(mim, mfu)
    # Right-hand side
    Ftop = gf.asm_boundary_source(TOP, mim, mfu, mfd, np.repeat([[0],[0],[-1]],nbd,1))
    Fleft= gf.asm_boundary_source(LEFT, mim, mfu, mfd, np.repeat([[0],[10],[0]],nbd,1))
    sico.RHS = Ftop + Fleft

    sico.nbdof = mfu.nbdof()
    sico.q0 = mfu.basic_dof_from_cvid()
    
    sico.bot = pidbot
    

    # H-Matrix 
    fillH(pidbot,sico,mfu.nbdof())
    return m
示例#5
0
def import_fem2(sico):
    """ Build a mesh object using getfem.
    
    We use getfem++ to build the finite element model and
    to fill in the operators required by siconos:
    - the mass matrix (Mass)
    - the stiffness matrix (Stiff)
    - the matrix that links global coordinates and local coord. at contact points (H)
    
    """
    ############################
    # The geometry and the mesh
    ############################
    dimX = 10.01
    dimY = 10.01
    dimZ = 10.01
    stepX = 1.0
    stepY = 1.0
    stepZ = 1.0
    x = np.arange(0, dimX, stepX)
    y = np.arange(0, dimY, stepY)
    z = np.arange(0, dimZ, stepZ)
    m = gf.Mesh('regular simplices', x, y, z)
    m.set('optimize_structure')
    # Export the mesh to vtk
    m.export_to_vtk("BlockMesh.vtk")

    # Create MeshFem objects
    # (i.e. assign elements onto the mesh for each variable)
    mfu = gf.MeshFem(m, 3)  # displacement
    mfd = gf.MeshFem(m, 1)  # data
    mff = gf.MeshFem(m, 1)  # for plot von-mises
    # assign the FEM
    mfu.set_fem(gf.Fem('FEM_PK(3,1)'))
    mfd.set_fem(gf.Fem('FEM_PK(3,0)'))
    mff.set_fem(gf.Fem('FEM_PK_DISCONTINUOUS(3,1,0.01)'))
    # mfu.export_to_vtk("BlockMeshDispl.vtk")

    # Set the integration method
    mim = gf.MeshIm(m, gf.Integ('IM_TETRAHEDRON(5)'))

    # Summary
    print(' ==================================== \n Mesh details: ')
    print(' Problem dimension:', mfu.qdim(), '\n Number of elements: ',
          m.nbcvs(), '\n Number of nodes: ', m.nbpts())
    print(' Number of dof: ', mfu.nbdof(), '\n Element type: ',
          mfu.fem()[0].char())
    print(' ====================================')

    ###########################
    # Set the parameters
    # for the constitutive law
    ###########################
    E = 1e3  # Young modulus
    Nu = 0.3  # Poisson coef.
    # Lame coeff.
    Lambda = E * Nu / ((1 + Nu) * (1 - 2 * Nu))
    Mu = E / (2 * (1 + Nu))
    # Density
    Rho = 7800
    ############################
    # Boundaries detection
    ############################
    allPoints = m.pts()
    # Bottom points and faces
    cbot = (abs(allPoints[2, :]) < 1e-6)
    pidbot = np.compress(cbot, list(range(0, m.nbpts())))
    fbot = m.faces_from_pid(pidbot)
    BOTTOM = 1
    m.set_region(BOTTOM, fbot)
    # Top points and faces
    ctop = (abs(allPoints[2, :]) > dimZ - stepZ)
    pidtop = np.compress(ctop, list(range(0, m.nbpts())))
    ftop = m.faces_from_pid(pidtop)
    TOP = 2
    m.set_region(TOP, ftop)
    # Top-Left points and faces
    cleft = (abs(allPoints[1, :]) < 1e-6)
    clefttop = cleft * ctop
    pidlefttop = np.compress(clefttop, list(range(0, m.nbpts())))
    flefttop = m.faces_from_pid(pidlefttop)
    pidleft = np.compress(cleft, list(range(0, m.nbpts())))
    fleft = m.faces_from_pid(pidleft)
    LEFTTOP = 3
    m.set_region(LEFTTOP, flefttop)
    LEFT = 4
    m.set_region(LEFT, fleft)

    ############################
    # Assembly
    ############################
    nbd = mfd.nbdof()
    # Stiffness matrix
    sico.Stiff = gf.asm_linear_elasticity(mim, mfu, mfd,
                                          np.repeat([Lambda], nbd),
                                          np.repeat([Mu], nbd))
    # Mass matrix
    sico.Mass = Rho * gf.asm_mass_matrix(mim, mfu)
    # Right-hand side
    Ftop = gf.asm_boundary_source(TOP, mim, mfu, mfd,
                                  np.repeat([[0], [0], [-1]], nbd, 1))
    Fleft = gf.asm_boundary_source(LEFT, mim, mfu, mfd,
                                   np.repeat([[0], [10], [0]], nbd, 1))
    sico.RHS = Ftop + Fleft

    sico.nbdof = mfu.nbdof()
    sico.q0 = mfu.basic_dof_from_cvid()

    sico.bot = pidbot

    # H-Matrix
    fillH(pidbot, sico, mfu.nbdof())
    return m
# 以上で設定した、条件を使用して外力ベクトルと剛性行列を設定します。

# In[16]:

help(gf.asm_boundary_source)


# In[17]:

help(gf.asm_linear_elasticity)


# In[18]:

nbd = mfd.nbdof()
F = gf.asm_boundary_source(NEUMANN_BOUNDARY, mim, mfu, mfd, np.repeat([[0],[-100],[0]],nbd,1))
K = gf.asm_linear_elasticity(mim, mfu, mfd, np.repeat([Lambda], nbd), np.repeat([Mu], nbd))


# # 固定条件の設定
# DIRICHLET条件(固定端条件)の設定をします。

# In[19]:

(H,R) = gf.asm_dirichlet(DIRICHLET_BOUNDARY, mim, mfu, mfd, mfd.eval('[[1,0,0],[0,1,0],[0,0,1]]'), mfd.eval('[0,0,0]'))
(N,U0) = H.dirichlet_nullspace(R)


# In[20]:

Nt = gf.Spmat('copy',N)