def func(): state = STATE_SPEC_NAME for line in open(getfile.get_from_strawlab("week1/nanodrop-spectra.tsv")): if state == STATE_SPEC_NAME: spectrum_names.append(line.strip()) elif state == STATE_DATA: wavelength, absorbance = line.strip().split() yield absorbance if int(wavelength) == (FREQ_TO - 1): state = STATE_SKIP continue state += 1
#!/usr/bin/env python import sys import argparse import Image import getfile parser = argparse.ArgumentParser() parser.add_argument( "images", metavar="N", type=str, nargs="*", help="images (default:lena)", default=[getfile.get_from_strawlab("week1/lena-color.png")], ) parser.add_argument("-t", "--threshold", type=int, default=80) args = parser.parse_args() for fn in args.images: print "Thresholding %s at %d" % (fn, args.threshold) im = Image.open(fn) im = im.convert("L") thr = im.point(lambda x: (x > args.threshold) * 255) thr.save("binary_" + fn)
import cv import time import getfile movie = cv.CaptureFromFile( getfile.get_from_strawlab("week1/flies.avi") ) nframes, rows, cols = map(lambda x: int(cv.GetCaptureProperty(movie, x)), [cv.CV_CAP_PROP_FRAME_COUNT, cv.CV_CAP_PROP_FRAME_HEIGHT, cv.CV_CAP_PROP_FRAME_WIDTH]) background = cv.CreateMat(rows, cols, cv.CV_8UC3) for i in range(nframes): cv.Max(cv.QueryFrame(movie), background, background) cv.ShowImage("background", background) cv.SetCaptureProperty(movie, cv.CV_CAP_PROP_POS_FRAMES, 0) for i in range(nframes): frame = cv.QueryFrame(movie) cv.ShowImage("before", frame) cv.Sub(background, frame, frame) cv.Smooth(frame, frame, param1=5) cv.Threshold(frame, frame, 70, 255, cv.CV_THRESH_BINARY) cv.ShowImage("after", frame) if cv.WaitKey(20) % 256 == ord('q'): break
import cv import sys import getfile lena = "lena-gray.png" img = cv.LoadImageM(getfile.get_from_strawlab("week1/"+lena)) cv.Smooth(img, img, smoothtype=cv.CV_GAUSSIAN, param1=11) cv.SaveImage("smoothed-"+lena, img)
import scipy.misc import matplotlib.pyplot as plt import getfile im = scipy.misc.imread(getfile.get_from_strawlab("week1/lena-gray.png")) plt.imshow(im) plt.colorbar() plt.show()
import matplotlib.pyplot as plt import matplotlib.animation as anim import pylsm.lsmreader as lsm import getfile lsmfile = lsm.Lsmimage(getfile.get_from_strawlab("week1/DB331-brain.bin")) lsmfile.open() Z = lsmfile.header['CZ LSM info']['Dimension Z'] fig = plt.figure() layer = lsmfile.get_image(stack=0, channel=0) im = plt.imshow(layer, cmap=plt.cm.hot) def updatefig(frame, i, Z, lsmfile): i[0] = i[0] + 1 if i[0] < Z - 1 else 0 im.set_array(lsmfile.get_image(stack=i[0], channel=0)) return im, ani = anim.FuncAnimation(fig, updatefig, fargs=([0], Z, lsmfile), interval=50, blit=True) plt.show()
import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile from getfile import get_from_strawlab rate,data = wavfile.read(get_from_strawlab("week1/sirentone.wav")) left = data[:,1] nsamps = len(left) t = np.arange(nsamps, dtype=float) / rate plt.plot(t, left) #plot in time domain xfreq = np.fft.fft(left) fft_freqs = np.fft.fftfreq(nsamps, d=1./rate) plt.figure() #plot in freq domain plt.loglog(fft_freqs[0:nsamps/2], np.abs(xfreq)[0:nsamps/2]) plt.figure() plt.specgram(data[:,1]) plt.show()
import csv import sqlite3 as sqlite import numpy as np import matplotlib.pyplot as plt import getfile csvfile = open(getfile.get_from_strawlab("week1/CTS.csv"),'rb') con = sqlite.connect(':memory:') with con and csvfile: csv = csv.reader(csvfile) cur = con.cursor() cur.execute("CREATE TABLE CTS(date INTEGER PRIMARY KEY, co2 FLOAT, temp FLOAT);") header = csv.next() #save the csv header row idx_date = header.index("yr_mn") idx_co2 = header.index("CO2") idx_temp = header.index("GISS") for row in csv: cur.execute("INSERT INTO CTS VALUES (?,?,?)", (row[idx_date],row[idx_co2],row[idx_temp]) ) cur.execute("SELECT date, co2 FROM cts WHERE co2 != 'NA'") data = np.array(cur.fetchall()) plt.plot(data[:,0],data[:,1]) plt.xlabel("date"); plt.ylabel("CO2 (ppm)") plt.show()
#!/usr/bin/env python from gi.repository import Gtk import getfile getfile.get_from_strawlab("week1/lena-color.png") getfile.get_from_strawlab("week1/lena-gray.png") class App(Gtk.Builder): def __init__(self): super(App, self).__init__() self.add_from_file("gui.ui") self.connect_signals(self) self._label = self.get_object("label1") self._image = self.get_object('image1') self._on_button_clicked() window = self.get_object('window1') window.connect('destroy', lambda x: Gtk.main_quit()) window.show_all() def _on_button_clicked(self, *args): lena = "lena-color.png" if self._label.get_text() == "lena-gray.png" else "lena-gray.png" self._image.set_from_file(lena) self._label.set_text(lena) app = App() Gtk.main()