def _composite_backwards_opt( input_file_name, max_percentile_level, output_file_name): """Composites inputs and outputs for backwards optimization. :param input_file_name: Path to input file. Will be read by `backwards_optimization.read_file`. :param max_percentile_level: See documentation at top of file. :param output_file_name: Path to output file. Will be written by `backwards_optimization.write_pmm_file`. """ print('Reading data from: "{0:s}"...'.format(input_file_name)) bwo_dictionary = backwards_opt.read_file(input_file_name)[0] input_matrices = bwo_dictionary[backwards_opt.INPUT_MATRICES_KEY] output_matrices = bwo_dictionary[backwards_opt.OUTPUT_MATRICES_KEY] sounding_pressure_matrix_pa = bwo_dictionary[ backwards_opt.SOUNDING_PRESSURES_KEY] print('Compositing non-optimized predictors...') mean_input_matrices, mean_sounding_pressures_pa = _composite_predictors( predictor_matrices=input_matrices, max_percentile_level=max_percentile_level, sounding_pressure_matrix_pa=sounding_pressure_matrix_pa) print('Compositing optimized predictors...') mean_output_matrices = _composite_predictors( predictor_matrices=output_matrices, max_percentile_level=max_percentile_level )[0] mean_initial_activation = numpy.mean( bwo_dictionary[backwards_opt.INITIAL_ACTIVATIONS_KEY] ) mean_final_activation = numpy.mean( bwo_dictionary[backwards_opt.FINAL_ACTIVATIONS_KEY] ) print('Writing output to: "{0:s}"...'.format(output_file_name)) backwards_opt.write_pmm_file( pickle_file_name=output_file_name, mean_denorm_input_matrices=mean_input_matrices, mean_denorm_output_matrices=mean_output_matrices, mean_initial_activation=mean_initial_activation, mean_final_activation=mean_final_activation, model_file_name=bwo_dictionary[backwards_opt.MODEL_FILE_KEY], non_pmm_file_name=input_file_name, pmm_max_percentile_level=max_percentile_level, mean_sounding_pressures_pa=mean_sounding_pressures_pa)
def _run(input_saliency_file_name, input_gradcam_file_name, input_bwo_file_name, input_novelty_file_name, max_percentile_level, radar_channel_idx_for_thres, threshold_value, threshold_type_string, output_file_name): """Runs probability-matched means (PMM). This is effectively the main method. :param input_saliency_file_name: See documentation at top of file. :param input_gradcam_file_name: Same. :param input_bwo_file_name: Same. :param input_novelty_file_name: Same. :param max_percentile_level: Same. :param radar_channel_idx_for_thres: Same. :param threshold_value: Same. :param threshold_type_string: Same. :param output_file_name: Same. """ if input_saliency_file_name not in NONE_STRINGS: input_gradcam_file_name = None input_bwo_file_name = None input_novelty_file_name = None elif input_gradcam_file_name not in NONE_STRINGS: input_saliency_file_name = None input_bwo_file_name = None input_novelty_file_name = None elif input_bwo_file_name not in NONE_STRINGS: input_saliency_file_name = None input_gradcam_file_name = None input_novelty_file_name = None else: input_saliency_file_name = None input_gradcam_file_name = None input_bwo_file_name = None if radar_channel_idx_for_thres < 0: radar_channel_idx_for_thres = None threshold_value = None threshold_type_string = None if input_saliency_file_name is not None: print('Reading data from: "{0:s}"...'.format(input_saliency_file_name)) saliency_dict = saliency_maps.read_standard_file( input_saliency_file_name) list_of_input_matrices = saliency_dict[ saliency_maps.INPUT_MATRICES_KEY] elif input_gradcam_file_name is not None: print('Reading data from: "{0:s}"...'.format(input_gradcam_file_name)) gradcam_dict = gradcam.read_standard_file(input_gradcam_file_name) list_of_input_matrices = gradcam_dict[gradcam.INPUT_MATRICES_KEY] elif input_bwo_file_name is not None: print('Reading data from: "{0:s}"...'.format(input_bwo_file_name)) bwo_dictionary = backwards_opt.read_standard_file(input_bwo_file_name) list_of_input_matrices = bwo_dictionary[ backwards_opt.INIT_FUNCTION_KEY] else: print('Reading data from: "{0:s}"...'.format(input_novelty_file_name)) novelty_dict = novelty_detection.read_standard_file( input_novelty_file_name) list_of_input_matrices = novelty_dict[ novelty_detection.TRIAL_INPUTS_KEY] novel_indices = novelty_dict[novelty_detection.NOVEL_INDICES_KEY] list_of_input_matrices = [ a[novel_indices, ...] for a in list_of_input_matrices ] print('Running PMM on denormalized predictor matrices...') num_input_matrices = len(list_of_input_matrices) list_of_mean_input_matrices = [None] * num_input_matrices pmm_metadata_dict = None threshold_count_matrix = None for i in range(num_input_matrices): if i == 0: list_of_mean_input_matrices[i], threshold_count_matrix = ( pmm.run_pmm_many_variables( input_matrix=list_of_input_matrices[i], max_percentile_level=max_percentile_level, threshold_var_index=radar_channel_idx_for_thres, threshold_value=threshold_value, threshold_type_string=threshold_type_string)) pmm_metadata_dict = pmm.check_input_args( input_matrix=list_of_input_matrices[i], max_percentile_level=max_percentile_level, threshold_var_index=radar_channel_idx_for_thres, threshold_value=threshold_value, threshold_type_string=threshold_type_string) else: list_of_mean_input_matrices[i] = pmm.run_pmm_many_variables( input_matrix=list_of_input_matrices[i], max_percentile_level=max_percentile_level)[0] if input_saliency_file_name is not None: print('Running PMM on saliency matrices...') list_of_saliency_matrices = saliency_dict[ saliency_maps.SALIENCY_MATRICES_KEY] num_input_matrices = len(list_of_input_matrices) list_of_mean_saliency_matrices = [None] * num_input_matrices for i in range(num_input_matrices): list_of_mean_saliency_matrices[i] = pmm.run_pmm_many_variables( input_matrix=list_of_saliency_matrices[i], max_percentile_level=max_percentile_level)[0] print('Writing output to: "{0:s}"...'.format(output_file_name)) saliency_maps.write_pmm_file( pickle_file_name=output_file_name, list_of_mean_input_matrices=list_of_mean_input_matrices, list_of_mean_saliency_matrices=list_of_mean_saliency_matrices, threshold_count_matrix=threshold_count_matrix, model_file_name=saliency_dict[saliency_maps.MODEL_FILE_KEY], standard_saliency_file_name=input_saliency_file_name, pmm_metadata_dict=pmm_metadata_dict) return if input_gradcam_file_name is not None: print('Running PMM on class-activation matrices...') list_of_cam_matrices = gradcam_dict[gradcam.CAM_MATRICES_KEY] list_of_guided_cam_matrices = gradcam_dict[ gradcam.GUIDED_CAM_MATRICES_KEY] num_input_matrices = len(list_of_input_matrices) list_of_mean_cam_matrices = [None] * num_input_matrices list_of_mean_guided_cam_matrices = [None] * num_input_matrices for i in range(num_input_matrices): if list_of_cam_matrices[i] is None: continue list_of_mean_cam_matrices[i] = pmm.run_pmm_many_variables( input_matrix=numpy.expand_dims(list_of_cam_matrices[i], axis=-1), max_percentile_level=max_percentile_level)[0] list_of_mean_cam_matrices[i] = list_of_mean_cam_matrices[i][..., 0] list_of_mean_guided_cam_matrices[i] = pmm.run_pmm_many_variables( input_matrix=list_of_guided_cam_matrices[i], max_percentile_level=max_percentile_level)[0] print('Writing output to: "{0:s}"...'.format(output_file_name)) gradcam.write_pmm_file( pickle_file_name=output_file_name, list_of_mean_input_matrices=list_of_mean_input_matrices, list_of_mean_cam_matrices=list_of_mean_cam_matrices, list_of_mean_guided_cam_matrices=list_of_mean_guided_cam_matrices, model_file_name=gradcam_dict[gradcam.MODEL_FILE_KEY], standard_gradcam_file_name=input_gradcam_file_name, pmm_metadata_dict=pmm_metadata_dict) return if input_bwo_file_name is not None: print('Running PMM on backwards-optimization output...') list_of_optimized_matrices = bwo_dictionary[ backwards_opt.OPTIMIZED_MATRICES_KEY] num_input_matrices = len(list_of_input_matrices) list_of_mean_optimized_matrices = [None] * num_input_matrices for i in range(num_input_matrices): list_of_mean_optimized_matrices[i] = pmm.run_pmm_many_variables( input_matrix=list_of_optimized_matrices[i], max_percentile_level=max_percentile_level)[0] mean_initial_activation = numpy.mean( bwo_dictionary[backwards_opt.INITIAL_ACTIVATIONS_KEY]) mean_final_activation = numpy.mean( bwo_dictionary[backwards_opt.FINAL_ACTIVATIONS_KEY]) print('Writing output to: "{0:s}"...'.format(output_file_name)) backwards_opt.write_pmm_file( pickle_file_name=output_file_name, list_of_mean_input_matrices=list_of_mean_input_matrices, list_of_mean_optimized_matrices=list_of_mean_optimized_matrices, mean_initial_activation=mean_initial_activation, mean_final_activation=mean_final_activation, threshold_count_matrix=threshold_count_matrix, model_file_name=bwo_dictionary[backwards_opt.MODEL_FILE_KEY], standard_bwo_file_name=input_bwo_file_name, pmm_metadata_dict=pmm_metadata_dict) return print('Running PMM on novelty-detection output...') mean_novel_image_matrix_upconv = pmm.run_pmm_many_variables( input_matrix=novelty_dict[novelty_detection.NOVEL_IMAGES_UPCONV_KEY], max_percentile_level=max_percentile_level)[0] mean_novel_image_matrix_upconv_svd = pmm.run_pmm_many_variables( input_matrix=novelty_dict[ novelty_detection.NOVEL_IMAGES_UPCONV_SVD_KEY], max_percentile_level=max_percentile_level)[0] print('Writing output to: "{0:s}"...'.format(output_file_name)) novelty_detection.write_pmm_file( pickle_file_name=output_file_name, mean_novel_image_matrix=list_of_mean_input_matrices[0], mean_novel_image_matrix_upconv=mean_novel_image_matrix_upconv, mean_novel_image_matrix_upconv_svd=mean_novel_image_matrix_upconv_svd, threshold_count_matrix=threshold_count_matrix, standard_novelty_file_name=input_novelty_file_name, pmm_metadata_dict=pmm_metadata_dict)
def _run(interpretation_type_string, baseline_file_name, trial_file_name, max_pmm_percentile_level, num_iterations, confidence_level, output_file_name): """Runs Monte Carlo significance test for interpretation output. This is effectively the main method. :param interpretation_type_string: See documentation at top of file. :param baseline_file_name: Same. :param trial_file_name: Same. :param max_pmm_percentile_level: Same. :param num_iterations: Same. :param confidence_level: Same. :param output_file_name: Same. :raises: ValueError: if `interpretation_type_string not in VALID_INTERPRETATION_TYPE_STRINGS`. """ if interpretation_type_string not in VALID_INTERPRETATION_TYPE_STRINGS: error_string = ( '\n{0:s}\nValid interpretation types (listed above) do not include ' '"{1:s}".' ).format( str(VALID_INTERPRETATION_TYPE_STRINGS), interpretation_type_string ) raise ValueError(error_string) print('Reading baseline set from: "{0:s}"...'.format(baseline_file_name)) if interpretation_type_string == SALIENCY_STRING: baseline_dict = saliency_maps.read_standard_file(baseline_file_name) elif interpretation_type_string == GRADCAM_STRING: baseline_dict = gradcam.read_standard_file(baseline_file_name) else: baseline_dict = backwards_opt.read_standard_file(baseline_file_name) print('Reading trial set from: "{0:s}"...'.format(trial_file_name)) monte_carlo_dict = None cam_monte_carlo_dict = None guided_cam_monte_carlo_dict = None if interpretation_type_string == SALIENCY_STRING: trial_dict = saliency_maps.read_standard_file(trial_file_name) monte_carlo_dict = monte_carlo.run_monte_carlo_test( list_of_baseline_matrices=baseline_dict[ saliency_maps.SALIENCY_MATRICES_KEY], list_of_trial_matrices=trial_dict[ saliency_maps.SALIENCY_MATRICES_KEY], max_pmm_percentile_level=max_pmm_percentile_level, num_iterations=num_iterations, confidence_level=confidence_level) monte_carlo_dict[monte_carlo.BASELINE_FILE_KEY] = baseline_file_name list_of_input_matrices = trial_dict[saliency_maps.INPUT_MATRICES_KEY] elif interpretation_type_string == GRADCAM_STRING: trial_dict = gradcam.read_standard_file(trial_file_name) cam_monte_carlo_dict = monte_carlo.run_monte_carlo_test( list_of_baseline_matrices=baseline_dict[gradcam.CAM_MATRICES_KEY], list_of_trial_matrices=trial_dict[gradcam.CAM_MATRICES_KEY], max_pmm_percentile_level=max_pmm_percentile_level, num_iterations=num_iterations, confidence_level=confidence_level) guided_cam_monte_carlo_dict = monte_carlo.run_monte_carlo_test( list_of_baseline_matrices=baseline_dict[ gradcam.GUIDED_CAM_MATRICES_KEY], list_of_trial_matrices=trial_dict[ gradcam.GUIDED_CAM_MATRICES_KEY], max_pmm_percentile_level=max_pmm_percentile_level, num_iterations=num_iterations, confidence_level=confidence_level) cam_monte_carlo_dict[ monte_carlo.BASELINE_FILE_KEY] = baseline_file_name guided_cam_monte_carlo_dict[ monte_carlo.BASELINE_FILE_KEY] = baseline_file_name list_of_input_matrices = trial_dict[gradcam.INPUT_MATRICES_KEY] else: trial_dict = backwards_opt.read_standard_file(trial_file_name) monte_carlo_dict = monte_carlo.run_monte_carlo_test( list_of_baseline_matrices=baseline_dict[ backwards_opt.OPTIMIZED_MATRICES_KEY], list_of_trial_matrices=trial_dict[ backwards_opt.OPTIMIZED_MATRICES_KEY], max_pmm_percentile_level=max_pmm_percentile_level, num_iterations=num_iterations, confidence_level=confidence_level) monte_carlo_dict[monte_carlo.BASELINE_FILE_KEY] = baseline_file_name list_of_input_matrices = trial_dict[backwards_opt.INIT_FUNCTION_KEY] print(SEPARATOR_STRING) num_matrices = len(list_of_input_matrices) list_of_mean_input_matrices = [None] * num_matrices for i in range(num_matrices): list_of_mean_input_matrices[i] = pmm.run_pmm_many_variables( input_matrix=list_of_input_matrices[i], max_percentile_level=max_pmm_percentile_level )[0] pmm_metadata_dict = pmm.check_input_args( input_matrix=list_of_input_matrices[0], max_percentile_level=max_pmm_percentile_level, threshold_var_index=None, threshold_value=None, threshold_type_string=None) print('Writing results to: "{0:s}"...'.format(output_file_name)) if interpretation_type_string == SALIENCY_STRING: saliency_maps.write_pmm_file( pickle_file_name=output_file_name, list_of_mean_input_matrices=list_of_mean_input_matrices, list_of_mean_saliency_matrices=copy.deepcopy( monte_carlo_dict[monte_carlo.TRIAL_PMM_MATRICES_KEY] ), threshold_count_matrix=None, model_file_name=trial_dict[saliency_maps.MODEL_FILE_KEY], standard_saliency_file_name=trial_file_name, pmm_metadata_dict=pmm_metadata_dict, monte_carlo_dict=monte_carlo_dict) elif interpretation_type_string == GRADCAM_STRING: gradcam.write_pmm_file( pickle_file_name=output_file_name, list_of_mean_input_matrices=list_of_mean_input_matrices, list_of_mean_cam_matrices=copy.deepcopy( cam_monte_carlo_dict[monte_carlo.TRIAL_PMM_MATRICES_KEY] ), list_of_mean_guided_cam_matrices=copy.deepcopy( guided_cam_monte_carlo_dict[monte_carlo.TRIAL_PMM_MATRICES_KEY] ), model_file_name=trial_dict[gradcam.MODEL_FILE_KEY], standard_gradcam_file_name=trial_file_name, pmm_metadata_dict=pmm_metadata_dict, cam_monte_carlo_dict=cam_monte_carlo_dict, guided_cam_monte_carlo_dict=guided_cam_monte_carlo_dict) else: backwards_opt.write_pmm_file( pickle_file_name=output_file_name, list_of_mean_input_matrices=list_of_mean_input_matrices, list_of_mean_optimized_matrices=copy.deepcopy( monte_carlo_dict[monte_carlo.TRIAL_PMM_MATRICES_KEY] ), mean_initial_activation=numpy.mean( trial_dict[backwards_opt.INITIAL_ACTIVATIONS_KEY] ), mean_final_activation=numpy.mean( trial_dict[backwards_opt.FINAL_ACTIVATIONS_KEY] ), threshold_count_matrix=None, model_file_name=trial_dict[backwards_opt.MODEL_FILE_KEY], standard_bwo_file_name=trial_file_name, pmm_metadata_dict=pmm_metadata_dict, monte_carlo_dict=monte_carlo_dict)