示例#1
0
def _run(storm_metafile_name, warning_dir_name):
    """Finds which storms are linked to an NWS tornado warning.

    This is effectively the main method.

    :param storm_metafile_name: See documentation at top of file.
    :param warning_dir_name: Same.
    """

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    full_storm_id_strings, valid_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name))
    secondary_id_strings = (
        temporal_tracking.full_to_partial_ids(full_storm_id_strings)[-1])

    these_times_unix_sec = numpy.concatenate(
        (valid_times_unix_sec, valid_times_unix_sec - NUM_SECONDS_PER_DAY,
         valid_times_unix_sec + NUM_SECONDS_PER_DAY))

    spc_date_strings = [
        time_conversion.time_to_spc_date_string(t)
        for t in these_times_unix_sec
    ]
    spc_date_strings = numpy.unique(numpy.array(spc_date_strings))

    linked_secondary_id_strings = []

    for this_spc_date_string in spc_date_strings:
        this_file_name = '{0:s}/tornado_warnings_{1:s}.p'.format(
            warning_dir_name, this_spc_date_string)
        print('Reading warnings from: "{0:s}"...'.format(this_file_name))

        this_file_handle = open(this_file_name, 'rb')
        this_warning_table = pickle.load(this_file_handle)
        this_file_handle.close()

        this_num_warnings = len(this_warning_table.index)

        for k in range(this_num_warnings):
            linked_secondary_id_strings += (
                this_warning_table[LINKED_SECONDARY_IDS_KEY].values[k])

    print(SEPARATOR_STRING)

    storm_warned_flags = numpy.array(
        [s in linked_secondary_id_strings for s in secondary_id_strings],
        dtype=bool)

    print(('{0:d} of {1:d} storm objects are linked to an NWS tornado warning!'
           ).format(numpy.sum(storm_warned_flags), len(storm_warned_flags)))
示例#2
0
def _run(cnn_file_name, upconvnet_file_name, top_example_dir_name,
         baseline_storm_metafile_name, trial_storm_metafile_name,
         num_baseline_examples, num_trial_examples, num_novel_examples,
         cnn_feature_layer_name, percent_svd_variance_to_keep,
         output_file_name):
    """Runs novelty detection.

    This is effectively the main method.

    :param cnn_file_name: See documentation at top of file.
    :param upconvnet_file_name: Same.
    :param top_example_dir_name: Same.
    :param baseline_storm_metafile_name: Same.
    :param trial_storm_metafile_name: Same.
    :param num_baseline_examples: Same.
    :param num_trial_examples: Same.
    :param num_novel_examples: Same.
    :param cnn_feature_layer_name: Same.
    :param percent_svd_variance_to_keep: Same.
    :param output_file_name: Same.
    :raises: ValueError: if dimensions of first CNN input matrix != dimensions
        of upconvnet output.
    """

    print('Reading trained CNN from: "{0:s}"...'.format(cnn_file_name))
    cnn_model_object = cnn.read_model(cnn_file_name)

    cnn_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(cnn_file_name)[0]
    )

    print('Reading trained upconvnet from: "{0:s}"...'.format(
        upconvnet_file_name))
    upconvnet_model_object = cnn.read_model(upconvnet_file_name)

    # ucn_output_dimensions = numpy.array(
    #     upconvnet_model_object.output.get_shape().as_list()[1:], dtype=int
    # )

    if isinstance(cnn_model_object.input, list):
        first_cnn_input_tensor = cnn_model_object.input[0]
    else:
        first_cnn_input_tensor = cnn_model_object.input

    cnn_input_dimensions = numpy.array(
        first_cnn_input_tensor.get_shape().as_list()[1:], dtype=int
    )

    # if not numpy.array_equal(cnn_input_dimensions, ucn_output_dimensions):
    #     error_string = (
    #         'Dimensions of first CNN input matrix ({0:s}) should equal '
    #         'dimensions of upconvnet output ({1:s}).'
    #     ).format(str(cnn_input_dimensions), str(ucn_output_dimensions))
    #
    #     raise ValueError(error_string)

    print('Reading CNN metadata from: "{0:s}"...'.format(cnn_metafile_name))
    cnn_metadata_dict = cnn.read_model_metadata(cnn_metafile_name)

    print('Reading metadata for baseline examples from: "{0:s}"...'.format(
        baseline_storm_metafile_name))
    baseline_full_id_strings, baseline_times_unix_sec = (
        tracking_io.read_ids_and_times(baseline_storm_metafile_name)
    )

    print('Reading metadata for trial examples from: "{0:s}"...'.format(
        trial_storm_metafile_name))
    trial_full_id_strings, trial_times_unix_sec = (
        tracking_io.read_ids_and_times(trial_storm_metafile_name)
    )

    if 0 < num_baseline_examples < len(baseline_full_id_strings):
        baseline_full_id_strings = baseline_full_id_strings[
            :num_baseline_examples]
        baseline_times_unix_sec = baseline_times_unix_sec[
            :num_baseline_examples]

    if 0 < num_trial_examples < len(trial_full_id_strings):
        trial_full_id_strings = trial_full_id_strings[:num_trial_examples]
        trial_times_unix_sec = trial_times_unix_sec[:num_trial_examples]

    num_trial_examples = len(trial_full_id_strings)

    if num_novel_examples <= 0:
        num_novel_examples = num_trial_examples + 0

    num_novel_examples = min([num_novel_examples, num_trial_examples])
    print('Number of novel examples to find: {0:d}'.format(num_novel_examples))

    bad_baseline_indices = tracking_utils.find_storm_objects(
        all_id_strings=baseline_full_id_strings,
        all_times_unix_sec=baseline_times_unix_sec,
        id_strings_to_keep=trial_full_id_strings,
        times_to_keep_unix_sec=trial_times_unix_sec, allow_missing=True)

    print('Removing {0:d} trial examples from baseline set...'.format(
        len(bad_baseline_indices)
    ))

    baseline_times_unix_sec = numpy.delete(
        baseline_times_unix_sec, bad_baseline_indices
    )
    baseline_full_id_strings = numpy.delete(
        numpy.array(baseline_full_id_strings), bad_baseline_indices
    )
    baseline_full_id_strings = baseline_full_id_strings.tolist()

    # num_baseline_examples = len(baseline_full_id_strings)

    print(SEPARATOR_STRING)

    list_of_baseline_input_matrices, _ = testing_io.read_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=baseline_full_id_strings,
        desired_times_unix_sec=baseline_times_unix_sec,
        option_dict=cnn_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY],
        list_of_layer_operation_dicts=cnn_metadata_dict[
            cnn.LAYER_OPERATIONS_KEY]
    )

    print(SEPARATOR_STRING)

    list_of_trial_input_matrices, _ = testing_io.read_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=trial_full_id_strings,
        desired_times_unix_sec=trial_times_unix_sec,
        option_dict=cnn_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY],
        list_of_layer_operation_dicts=cnn_metadata_dict[
            cnn.LAYER_OPERATIONS_KEY]
    )

    print(SEPARATOR_STRING)

    novelty_dict = novelty_detection.do_novelty_detection(
        list_of_baseline_input_matrices=list_of_baseline_input_matrices,
        list_of_trial_input_matrices=list_of_trial_input_matrices,
        cnn_model_object=cnn_model_object,
        cnn_feature_layer_name=cnn_feature_layer_name,
        upconvnet_model_object=upconvnet_model_object,
        num_novel_examples=num_novel_examples, multipass=False,
        percent_svd_variance_to_keep=percent_svd_variance_to_keep)

    print(SEPARATOR_STRING)

    print('Adding metadata to novelty-detection results...')
    novelty_dict = novelty_detection.add_metadata(
        novelty_dict=novelty_dict,
        baseline_full_id_strings=baseline_full_id_strings,
        baseline_storm_times_unix_sec=baseline_times_unix_sec,
        trial_full_id_strings=trial_full_id_strings,
        trial_storm_times_unix_sec=trial_times_unix_sec,
        cnn_file_name=cnn_file_name, upconvnet_file_name=upconvnet_file_name)

    print('Denormalizing inputs and outputs of novelty detection...')

    novelty_dict[novelty_detection.BASELINE_INPUTS_KEY] = (
        model_interpretation.denormalize_data(
            list_of_input_matrices=novelty_dict[
                novelty_detection.BASELINE_INPUTS_KEY
            ],
            model_metadata_dict=cnn_metadata_dict)
    )

    novelty_dict[novelty_detection.TRIAL_INPUTS_KEY] = (
        model_interpretation.denormalize_data(
            list_of_input_matrices=novelty_dict[
                novelty_detection.TRIAL_INPUTS_KEY
            ],
            model_metadata_dict=cnn_metadata_dict)
    )

    cnn_metadata_dict[
        cnn.TRAINING_OPTION_DICT_KEY][trainval_io.SOUNDING_FIELDS_KEY] = None

    novelty_dict[novelty_detection.NOVEL_IMAGES_UPCONV_KEY] = (
        model_interpretation.denormalize_data(
            list_of_input_matrices=[
                novelty_dict[novelty_detection.NOVEL_IMAGES_UPCONV_KEY]
            ],
            model_metadata_dict=cnn_metadata_dict)
    )[0]

    novelty_dict[novelty_detection.NOVEL_IMAGES_UPCONV_SVD_KEY] = (
        model_interpretation.denormalize_data(
            list_of_input_matrices=[
                novelty_dict[novelty_detection.NOVEL_IMAGES_UPCONV_SVD_KEY]
            ],
            model_metadata_dict=cnn_metadata_dict)
    )[0]

    print('Writing results to: "{0:s}"...'.format(output_file_name))
    novelty_detection.write_standard_file(novelty_dict=novelty_dict,
                                          pickle_file_name=output_file_name)
示例#3
0
def _run(model_file_name, component_type_string, target_class, layer_name,
         ideal_activation, neuron_indices, channel_index, top_example_dir_name,
         storm_metafile_name, num_examples, randomize_weights,
         cascading_random, output_file_name):
    """Computes saliency map for each storm object and each model component.

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param component_type_string: Same.
    :param target_class: Same.
    :param layer_name: Same.
    :param ideal_activation: Same.
    :param neuron_indices: Same.
    :param channel_index: Same.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param randomize_weights: Same.
    :param cascading_random: Same.
    :param output_file_name: Same.
    """

    # Check input args.
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    model_interpretation.check_component_type(component_type_string)

    # Read model and metadata.
    print('Reading model from: "{0:s}"...'.format(model_file_name))
    model_object = cnn.read_model(model_file_name)

    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print(
        'Reading model metadata from: "{0:s}"...'.format(model_metafile_name))
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

    output_dir_name, pathless_output_file_name = os.path.split(
        output_file_name)
    extensionless_output_file_name, output_file_extension = os.path.splitext(
        pathless_output_file_name)

    if randomize_weights:
        conv_dense_layer_names = _find_conv_and_dense_layers(model_object)
        conv_dense_layer_names.reverse()
        num_sets = len(conv_dense_layer_names)
    else:
        conv_dense_layer_names = []
        num_sets = 1

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    full_storm_id_strings, storm_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name))

    print(SEPARATOR_STRING)

    if 0 < num_examples < len(full_storm_id_strings):
        full_storm_id_strings = full_storm_id_strings[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    example_dict = testing_io.read_predictors_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=full_storm_id_strings,
        desired_times_unix_sec=storm_times_unix_sec,
        option_dict=training_option_dict,
        layer_operation_dicts=model_metadata_dict[cnn.LAYER_OPERATIONS_KEY])
    print(SEPARATOR_STRING)

    predictor_matrices = example_dict[testing_io.INPUT_MATRICES_KEY]
    sounding_pressure_matrix_pa = example_dict[
        testing_io.SOUNDING_PRESSURES_KEY]

    denorm_predictor_matrices = trainval_io.separate_shear_and_reflectivity(
        list_of_input_matrices=copy.deepcopy(predictor_matrices),
        training_option_dict=training_option_dict)

    print('Denormalizing model inputs...')
    denorm_predictor_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=denorm_predictor_matrices,
        model_metadata_dict=model_metadata_dict)
    print(SEPARATOR_STRING)

    for k in range(num_sets):
        if randomize_weights:
            if cascading_random:
                _reset_weights_in_layer(model_object=model_object,
                                        layer_name=conv_dense_layer_names[k])

                this_model_object = model_object

                this_output_file_name = (
                    '{0:s}/{1:s}_cascading-random_{2:s}{3:s}').format(
                        output_dir_name, extensionless_output_file_name,
                        conv_dense_layer_names[k].replace('_', '-'),
                        output_file_extension)
            else:
                this_model_object = keras.models.Model.from_config(
                    model_object.get_config())
                this_model_object.set_weights(model_object.get_weights())

                _reset_weights_in_layer(model_object=this_model_object,
                                        layer_name=conv_dense_layer_names[k])

                this_output_file_name = '{0:s}/{1:s}_random_{2:s}{3:s}'.format(
                    output_dir_name, extensionless_output_file_name,
                    conv_dense_layer_names[k].replace('_', '-'),
                    output_file_extension)
        else:
            this_model_object = model_object
            this_output_file_name = output_file_name

        # print(K.eval(this_model_object.get_layer(name='dense_3').weights[0]))

        if component_type_string == CLASS_COMPONENT_TYPE_STRING:
            print('Computing saliency maps for target class {0:d}...'.format(
                target_class))

            saliency_matrices = (
                saliency_maps.get_saliency_maps_for_class_activation(
                    model_object=this_model_object,
                    target_class=target_class,
                    list_of_input_matrices=predictor_matrices))

        elif component_type_string == NEURON_COMPONENT_TYPE_STRING:
            print(
                ('Computing saliency maps for neuron {0:s} in layer "{1:s}"...'
                 ).format(str(neuron_indices), layer_name))

            saliency_matrices = (
                saliency_maps.get_saliency_maps_for_neuron_activation(
                    model_object=this_model_object,
                    layer_name=layer_name,
                    neuron_indices=neuron_indices,
                    list_of_input_matrices=predictor_matrices,
                    ideal_activation=ideal_activation))

        else:
            print((
                'Computing saliency maps for channel {0:d} in layer "{1:s}"...'
            ).format(channel_index, layer_name))

            saliency_matrices = (
                saliency_maps.get_saliency_maps_for_channel_activation(
                    model_object=this_model_object,
                    layer_name=layer_name,
                    channel_index=channel_index,
                    list_of_input_matrices=predictor_matrices,
                    stat_function_for_neuron_activations=K.max,
                    ideal_activation=ideal_activation))

        saliency_matrices = trainval_io.separate_shear_and_reflectivity(
            list_of_input_matrices=saliency_matrices,
            training_option_dict=training_option_dict)

        print('Writing saliency maps to file: "{0:s}"...'.format(
            this_output_file_name))

        saliency_metadata_dict = saliency_maps.check_metadata(
            component_type_string=component_type_string,
            target_class=target_class,
            layer_name=layer_name,
            ideal_activation=ideal_activation,
            neuron_indices=neuron_indices,
            channel_index=channel_index)

        saliency_maps.write_standard_file(
            pickle_file_name=this_output_file_name,
            denorm_predictor_matrices=denorm_predictor_matrices,
            saliency_matrices=saliency_matrices,
            full_storm_id_strings=full_storm_id_strings,
            storm_times_unix_sec=storm_times_unix_sec,
            model_file_name=model_file_name,
            metadata_dict=saliency_metadata_dict,
            sounding_pressure_matrix_pa=sounding_pressure_matrix_pa)
示例#4
0
def _run(model_file_name, top_example_dir_name, storm_metafile_name,
         output_dir_name):
    """Uses trained CNN to make predictions for specific examples.

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param output_dir_name: Same.
    :raises: ValueError: if the model does multi-class classification.
    """

    print('Reading CNN from: "{0:s}"...'.format(model_file_name))
    model_object = cnn.read_model(model_file_name)

    num_output_neurons = (
        model_object.layers[-1].output.get_shape().as_list()[-1]
    )

    if num_output_neurons > 2:
        error_string = (
            'The model has {0:d} output neurons, which suggests {0:d}-class '
            'classification.  This script handles only binary classification.'
        ).format(num_output_neurons)

        raise ValueError(error_string)

    soundings_only = False

    if isinstance(model_object.input, list):
        list_of_input_tensors = model_object.input
    else:
        list_of_input_tensors = [model_object.input]

    if len(list_of_input_tensors) == 1:
        these_spatial_dim = numpy.array(
            list_of_input_tensors[0].get_shape().as_list()[1:-1], dtype=int
        )
        soundings_only = len(these_spatial_dim) == 1

    cnn_metafile_name = cnn.find_metafile(
        model_file_name=model_file_name, raise_error_if_missing=True
    )
    print('Reading CNN metadata from: "{0:s}"...'.format(cnn_metafile_name))
    cnn_metadata_dict = cnn.read_model_metadata(cnn_metafile_name)

    print('Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    desired_full_id_strings, desired_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name)
    )

    unique_spc_date_strings = list(set([
        time_conversion.time_to_spc_date_string(t)
        for t in desired_times_unix_sec
    ]))

    example_file_names = [
        input_examples.find_example_file(
            top_directory_name=top_example_dir_name, shuffled=False,
            spc_date_string=d, raise_error_if_missing=True
        ) for d in unique_spc_date_strings
    ]

    first_spc_date_string = time_conversion.time_to_spc_date_string(
        numpy.min(desired_times_unix_sec)
    )
    last_spc_date_string = time_conversion.time_to_spc_date_string(
        numpy.max(desired_times_unix_sec)
    )

    training_option_dict = cnn_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    training_option_dict[trainval_io.EXAMPLE_FILES_KEY] = example_file_names
    training_option_dict[trainval_io.FIRST_STORM_TIME_KEY] = (
        time_conversion.get_start_of_spc_date(first_spc_date_string)
    )
    training_option_dict[trainval_io.LAST_STORM_TIME_KEY] = (
        time_conversion.get_end_of_spc_date(last_spc_date_string)
    )
    training_option_dict[trainval_io.NUM_EXAMPLES_PER_BATCH_KEY] = (
        NUM_EXAMPLES_PER_BATCH
    )

    if soundings_only:
        generator_object = testing_io.sounding_generator(
            option_dict=training_option_dict,
            desired_full_id_strings=desired_full_id_strings,
            desired_times_unix_sec=desired_times_unix_sec)

    elif cnn_metadata_dict[cnn.LAYER_OPERATIONS_KEY] is not None:
        generator_object = testing_io.gridrad_generator_2d_reduced(
            option_dict=training_option_dict,
            desired_full_id_strings=desired_full_id_strings,
            desired_times_unix_sec=desired_times_unix_sec,
            list_of_operation_dicts=cnn_metadata_dict[
                cnn.LAYER_OPERATIONS_KEY]
        )

    elif cnn_metadata_dict[cnn.CONV_2D3D_KEY]:
        generator_object = testing_io.myrorss_generator_2d3d(
            option_dict=training_option_dict,
            desired_full_id_strings=desired_full_id_strings,
            desired_times_unix_sec=desired_times_unix_sec)
    else:
        generator_object = testing_io.generator_2d_or_3d(
            option_dict=training_option_dict,
            desired_full_id_strings=desired_full_id_strings,
            desired_times_unix_sec=desired_times_unix_sec)

    include_soundings = (
        training_option_dict[trainval_io.SOUNDING_FIELDS_KEY] is not None
    )

    full_storm_id_strings = []
    storm_times_unix_sec = numpy.array([], dtype=int)
    observed_labels = numpy.array([], dtype=int)
    class_probability_matrix = None

    while True:
        try:
            this_storm_object_dict = next(generator_object)
            print(SEPARATOR_STRING)
        except StopIteration:
            break

        full_storm_id_strings += this_storm_object_dict[testing_io.FULL_IDS_KEY]
        storm_times_unix_sec = numpy.concatenate((
            storm_times_unix_sec,
            this_storm_object_dict[testing_io.STORM_TIMES_KEY]
        ))
        observed_labels = numpy.concatenate((
            observed_labels, this_storm_object_dict[testing_io.TARGET_ARRAY_KEY]
        ))

        if soundings_only:
            these_predictor_matrices = [
                this_storm_object_dict[testing_io.SOUNDING_MATRIX_KEY]
            ]
        else:
            these_predictor_matrices = this_storm_object_dict[
                testing_io.INPUT_MATRICES_KEY]

        if include_soundings:
            this_sounding_matrix = these_predictor_matrices[-1]
        else:
            this_sounding_matrix = None

        if soundings_only:
            this_probability_matrix = cnn.apply_cnn_soundings_only(
                model_object=model_object, sounding_matrix=this_sounding_matrix,
                verbose=True)
        elif cnn_metadata_dict[cnn.CONV_2D3D_KEY]:
            if training_option_dict[trainval_io.UPSAMPLE_REFLECTIVITY_KEY]:
                this_probability_matrix = cnn.apply_2d_or_3d_cnn(
                    model_object=model_object,
                    radar_image_matrix=these_predictor_matrices[0],
                    sounding_matrix=this_sounding_matrix, verbose=True)
            else:
                this_probability_matrix = cnn.apply_2d3d_cnn(
                    model_object=model_object,
                    reflectivity_matrix_dbz=these_predictor_matrices[0],
                    azimuthal_shear_matrix_s01=these_predictor_matrices[1],
                    sounding_matrix=this_sounding_matrix, verbose=True)
        else:
            this_probability_matrix = cnn.apply_2d_or_3d_cnn(
                model_object=model_object,
                radar_image_matrix=these_predictor_matrices[0],
                sounding_matrix=this_sounding_matrix, verbose=True)

        print(SEPARATOR_STRING)

        if class_probability_matrix is None:
            class_probability_matrix = this_probability_matrix + 0.
        else:
            class_probability_matrix = numpy.concatenate(
                (class_probability_matrix, this_probability_matrix), axis=0
            )

    output_file_name = prediction_io.find_ungridded_file(
        directory_name=output_dir_name, raise_error_if_missing=False)

    print('Writing results to: "{0:s}"...'.format(output_file_name))

    prediction_io.write_ungridded_predictions(
        netcdf_file_name=output_file_name,
        class_probability_matrix=class_probability_matrix,
        observed_labels=observed_labels, storm_ids=full_storm_id_strings,
        storm_times_unix_sec=storm_times_unix_sec,
        target_name=training_option_dict[trainval_io.TARGET_NAME_KEY],
        model_file_name=model_file_name
    )
示例#5
0
def _run(storm_metafile_name, top_tracking_dir_name, latitude_buffer_deg,
         longitude_buffer_deg, rap_directory_name, ruc_directory_name,
         lead_time_seconds, lag_time_seconds, field_name_grib1,
         output_dir_name):
    """Plots RAP/RUC field centered on each example (storm object).

    This is effectively the main method.

    :param storm_metafile_name: See documentation at top of file.
    :param top_tracking_dir_name: Same.
    :param latitude_buffer_deg: Same.
    :param longitude_buffer_deg: Same.
    :param rap_directory_name: Same.
    :param ruc_directory_name: Same.
    :param lead_time_seconds: Same.
    :param lag_time_seconds: Same.
    :param field_name_grib1: Same.
    :param output_dir_name: Same.
    """

    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=output_dir_name
    )

    error_checking.assert_is_geq(latitude_buffer_deg, 1.)
    error_checking.assert_is_geq(longitude_buffer_deg, 1.)
    error_checking.assert_is_greater(lead_time_seconds, 0)
    error_checking.assert_is_greater(lag_time_seconds, 0)

    print('Reading metadata from: "{0:s}"...'.format(storm_metafile_name))
    full_storm_id_strings, storm_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name)
    )

    init_times_unix_sec = (
        storm_times_unix_sec + lead_time_seconds - lag_time_seconds
    )
    init_times_unix_sec = number_rounding.floor_to_nearest(
        init_times_unix_sec, INIT_TIME_INTERVAL_SEC
    )
    init_times_unix_sec = init_times_unix_sec.astype(int)

    num_examples = len(full_storm_id_strings)
    rap_file_names = [None] * num_examples
    ruc_file_names = [None] * num_examples

    for i in range(num_examples):
        if init_times_unix_sec[i] >= FIRST_RAP_TIME_UNIX_SEC:
            rap_file_names[i] = nwp_model_io.find_rap_file_any_grid(
                top_directory_name=rap_directory_name,
                init_time_unix_sec=init_times_unix_sec[i],
                lead_time_hours=0, raise_error_if_missing=True
            )

            continue

        ruc_file_names[i] = nwp_model_io.find_ruc_file_any_grid(
            top_directory_name=ruc_directory_name,
            init_time_unix_sec=init_times_unix_sec[i],
            lead_time_hours=0, raise_error_if_missing=True
        )

    for i in range(num_examples):
        _plot_rapruc_one_example(
            full_storm_id_string=full_storm_id_strings[i],
            storm_time_unix_sec=storm_times_unix_sec[i],
            top_tracking_dir_name=top_tracking_dir_name,
            latitude_buffer_deg=latitude_buffer_deg,
            longitude_buffer_deg=longitude_buffer_deg,
            lead_time_seconds=lead_time_seconds,
            field_name_grib1=field_name_grib1, output_dir_name=output_dir_name,
            rap_file_name=rap_file_names[i], ruc_file_name=ruc_file_names[i]
        )
def _run(model_file_name, top_example_dir_name, storm_metafile_name,
         num_examples, do_backwards_test, separate_radar_heights,
         num_bootstrap_reps, output_file_name):
    """Runs permutation test with specific examples (storm objects).

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param do_backwards_test: Same.
    :param separate_radar_heights: Same.
    :param num_bootstrap_reps: Same.
    :param output_file_name: Same.
    """

    print('Reading model from: "{0:s}"...'.format(model_file_name))
    model_object = cnn.read_model(model_file_name)
    metafile_name = cnn.find_metafile(model_file_name=model_file_name)

    print('Reading metadata from: "{0:s}"...'.format(metafile_name))
    cnn_metadata_dict = cnn.read_model_metadata(metafile_name)
    training_option_dict = cnn_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    full_storm_id_strings, storm_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name))
    print(SEPARATOR_STRING)

    if 0 < num_examples < len(full_storm_id_strings):
        numpy.random.seed(RANDOM_SEED)
        good_indices = numpy.random.permutation(len(full_storm_id_strings))
        good_indices = good_indices[:num_examples]

        full_storm_id_strings = [
            full_storm_id_strings[k] for k in good_indices
        ]
        storm_times_unix_sec = storm_times_unix_sec[good_indices]

    example_dict = testing_io.read_predictors_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=full_storm_id_strings,
        desired_times_unix_sec=storm_times_unix_sec,
        option_dict=training_option_dict,
        layer_operation_dicts=cnn_metadata_dict[cnn.LAYER_OPERATIONS_KEY])
    print(SEPARATOR_STRING)

    predictor_matrices = example_dict[testing_io.INPUT_MATRICES_KEY]
    target_values = example_dict[testing_io.TARGET_ARRAY_KEY]

    correlation_matrix, predictor_names = correlation.get_pearson_correlations(
        predictor_matrices=predictor_matrices,
        cnn_metadata_dict=cnn_metadata_dict,
        separate_radar_heights=separate_radar_heights)
    print(SEPARATOR_STRING)

    num_predictors = len(predictor_names)

    for i in range(num_predictors):
        for j in range(i, num_predictors):
            print(('Pearson correlation between "{0:s}" and "{1:s}" = {2:.3f}'
                   ).format(predictor_names[i], predictor_names[j],
                            correlation_matrix[i, j]))

    print(SEPARATOR_STRING)

    if do_backwards_test:
        result_dict = permutation.run_backwards_test(
            model_object=model_object,
            predictor_matrices=predictor_matrices,
            target_values=target_values,
            cnn_metadata_dict=cnn_metadata_dict,
            cost_function=permutation_utils.negative_auc_function,
            separate_radar_heights=separate_radar_heights,
            num_bootstrap_reps=num_bootstrap_reps)
    else:
        result_dict = permutation.run_forward_test(
            model_object=model_object,
            predictor_matrices=predictor_matrices,
            target_values=target_values,
            cnn_metadata_dict=cnn_metadata_dict,
            cost_function=permutation_utils.negative_auc_function,
            separate_radar_heights=separate_radar_heights,
            num_bootstrap_reps=num_bootstrap_reps)

    print(SEPARATOR_STRING)

    result_dict[permutation_utils.MODEL_FILE_KEY] = model_file_name
    result_dict[permutation_utils.TARGET_VALUES_KEY] = target_values
    result_dict[permutation_utils.FULL_IDS_KEY] = full_storm_id_strings
    result_dict[permutation_utils.STORM_TIMES_KEY] = storm_times_unix_sec

    print('Writing results to: "{0:s}"...'.format(output_file_name))
    permutation_utils.write_results(result_dict=result_dict,
                                    pickle_file_name=output_file_name)
def _run(activation_file_name, storm_metafile_name, num_examples,
         top_example_dir_name, num_radar_rows, num_radar_columns,
         allow_whitespace, colour_bar_length, output_dir_name):
    """Plots one or more examples (storm objects) for human input.

    This is effectively the main method.

    :param activation_file_name: See documentation at top of file.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param top_example_dir_name: Same.
    :param num_radar_rows: Same.
    :param num_radar_columns: Same.
    :param allow_whitespace: Same.
    :param colour_bar_length: Same.
    :param output_dir_name: Same.
    """

    if num_radar_rows <= 0:
        num_radar_rows = None
    if num_radar_columns <= 0:
        num_radar_columns = None

    if activation_file_name in ['', 'None']:
        activation_file_name = None

    if activation_file_name is None:
        print('Reading data from: "{0:s}"...'.format(storm_metafile_name))
        full_storm_id_strings, storm_times_unix_sec = (
            tracking_io.read_ids_and_times(storm_metafile_name))

        training_option_dict = dict()
        training_option_dict[trainval_io.SOUNDING_FIELDS_KEY] = None
        training_option_dict[trainval_io.SOUNDING_HEIGHTS_KEY] = None

        training_option_dict[trainval_io.NUM_ROWS_KEY] = num_radar_rows
        training_option_dict[trainval_io.NUM_COLUMNS_KEY] = num_radar_columns
        training_option_dict[trainval_io.NORMALIZATION_TYPE_KEY] = None
        training_option_dict[trainval_io.TARGET_NAME_KEY] = DUMMY_TARGET_NAME
        training_option_dict[trainval_io.BINARIZE_TARGET_KEY] = False
        training_option_dict[trainval_io.SAMPLING_FRACTIONS_KEY] = None
        training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

        model_metadata_dict = {cnn.LAYER_OPERATIONS_KEY: None}
    else:
        print('Reading data from: "{0:s}"...'.format(activation_file_name))
        activation_matrix, activation_metadata_dict = (
            model_activation.read_file(activation_file_name))

        num_model_components = activation_matrix.shape[1]
        if num_model_components > 1:
            error_string = (
                'The file should contain activations for only one model '
                'component, not {0:d}.').format(num_model_components)

            raise TypeError(error_string)

        full_storm_id_strings = activation_metadata_dict[
            model_activation.FULL_IDS_KEY]
        storm_times_unix_sec = activation_metadata_dict[
            model_activation.STORM_TIMES_KEY]

        model_file_name = activation_metadata_dict[
            model_activation.MODEL_FILE_NAME_KEY]
        model_metafile_name = '{0:s}/model_metadata.p'.format(
            os.path.split(model_file_name)[0])

        print('Reading metadata from: "{0:s}"...'.format(model_metafile_name))
        model_metadata_dict = cnn.read_model_metadata(model_metafile_name)

        training_option_dict = model_metadata_dict[
            cnn.TRAINING_OPTION_DICT_KEY]
        training_option_dict[trainval_io.NORMALIZATION_TYPE_KEY] = None
        training_option_dict[trainval_io.SAMPLING_FRACTIONS_KEY] = None
        training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

    training_option_dict[trainval_io.RADAR_FIELDS_KEY] = SHEAR_FIELD_NAMES
    training_option_dict[trainval_io.RADAR_HEIGHTS_KEY] = REFL_HEIGHTS_M_AGL
    training_option_dict[trainval_io.UPSAMPLE_REFLECTIVITY_KEY] = False
    model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY] = training_option_dict

    if 0 < num_examples < len(full_storm_id_strings):
        full_storm_id_strings = full_storm_id_strings[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    print(SEPARATOR_STRING)
    example_dict = testing_io.read_predictors_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=full_storm_id_strings,
        desired_times_unix_sec=storm_times_unix_sec,
        option_dict=model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY],
        layer_operation_dicts=model_metadata_dict[cnn.LAYER_OPERATIONS_KEY])
    print(SEPARATOR_STRING)

    predictor_matrices = example_dict[testing_io.INPUT_MATRICES_KEY]

    # TODO(thunderhoser): The rest of this code is very HACKY.
    predictor_matrices[0] = trainval_io.upsample_reflectivity(
        predictor_matrices[0][..., 0])
    predictor_matrices[0] = numpy.expand_dims(predictor_matrices[0], axis=-1)

    example_dict = {
        input_examples.RADAR_FIELDS_KEY: SHEAR_FIELD_NAMES,
        input_examples.REFL_IMAGE_MATRIX_KEY: predictor_matrices[0],
        input_examples.AZ_SHEAR_IMAGE_MATRIX_KEY: predictor_matrices[1],
        input_examples.RADAR_HEIGHTS_KEY: REFL_HEIGHTS_M_AGL
    }

    example_dict = input_examples.reduce_examples_3d_to_2d(
        example_dict=example_dict,
        list_of_operation_dicts=[REFL_LAYER_OPERATION_DICT])

    predictor_matrices = [example_dict[input_examples.RADAR_IMAGE_MATRIX_KEY]]

    layer_operation_dicts = [{
        input_examples.RADAR_FIELD_KEY: f,
        input_examples.MIN_HEIGHT_KEY: h1,
        input_examples.MAX_HEIGHT_KEY: h2,
        input_examples.OPERATION_NAME_KEY: op
    } for f, h1, h2, op in zip(
        example_dict[input_examples.RADAR_FIELDS_KEY], example_dict[
            input_examples.MIN_RADAR_HEIGHTS_KEY], example_dict[
                input_examples.MAX_RADAR_HEIGHTS_KEY], example_dict[
                    input_examples.RADAR_LAYER_OPERATION_NAMES_KEY])]

    model_metadata_dict[cnn.LAYER_OPERATIONS_KEY] = layer_operation_dicts

    figure_file_names = plot_examples.plot_examples(
        list_of_predictor_matrices=predictor_matrices,
        model_metadata_dict=model_metadata_dict,
        pmm_flag=False,
        output_dir_name=output_dir_name,
        plot_soundings=False,
        allow_whitespace=allow_whitespace,
        plot_panel_names=False,
        add_titles=False,
        label_colour_bars=True,
        colour_bar_length=colour_bar_length,
        colour_bar_font_size=COLOUR_BAR_FONT_SIZE,
        figure_resolution_dpi=FIGURE_RESOLUTION_DPI,
        refl_opacity=REFL_OPACITY,
        plot_grid_lines=False,
        full_storm_id_strings=full_storm_id_strings,
        storm_times_unix_sec=storm_times_unix_sec)

    for this_file_name in figure_file_names:
        print('Resizing image to {0:d} pixels: "{1:s}"...'.format(
            FIGURE_SIZE_PIXELS, this_file_name))

        imagemagick_utils.resize_image(input_file_name=this_file_name,
                                       output_file_name=this_file_name,
                                       output_size_pixels=FIGURE_SIZE_PIXELS)
def _run(model_file_name, top_example_dir_name, storm_metafile_name,
         num_examples, output_file_name):
    """Creates dummy saliency map for each storm object.

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param output_file_name: Same.
    """

    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)

    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print(
        'Reading model metadata from: "{0:s}"...'.format(model_metafile_name))
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    full_storm_id_strings, storm_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name))

    print(SEPARATOR_STRING)

    if 0 < num_examples < len(full_storm_id_strings):
        full_storm_id_strings = full_storm_id_strings[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    example_dict = testing_io.read_predictors_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=full_storm_id_strings,
        desired_times_unix_sec=storm_times_unix_sec,
        option_dict=training_option_dict,
        layer_operation_dicts=model_metadata_dict[cnn.LAYER_OPERATIONS_KEY])
    print(SEPARATOR_STRING)

    predictor_matrices = example_dict[testing_io.INPUT_MATRICES_KEY]
    sounding_pressure_matrix_pa = (
        example_dict[testing_io.SOUNDING_PRESSURES_KEY])

    radar_matrix = predictor_matrices[0]
    num_examples = radar_matrix.shape[0]
    num_channels = radar_matrix.shape[-1]
    num_spatial_dim = len(radar_matrix.shape) - 2

    if num_spatial_dim == 2:
        kernel_matrix = numpy.expand_dims(EDGE_DETECTOR_MATRIX_2D, axis=-1)
    else:
        kernel_matrix = numpy.expand_dims(EDGE_DETECTOR_MATRIX_3D, axis=-1)

    kernel_matrix = numpy.repeat(kernel_matrix, num_channels, axis=-1)
    kernel_matrix = numpy.expand_dims(kernel_matrix, axis=-1)
    kernel_matrix = numpy.repeat(kernel_matrix, num_channels, axis=-1)

    radar_saliency_matrix = numpy.full(radar_matrix.shape, numpy.nan)

    for i in range(num_examples):
        if numpy.mod(i, 10) == 0:
            print((
                'Have created dummy saliency map for {0:d} of {1:d} examples...'
            ).format(i, num_examples))

        if num_spatial_dim == 2:
            this_saliency_matrix = standalone_utils.do_2d_convolution(
                feature_matrix=radar_matrix[i, ...],
                kernel_matrix=kernel_matrix,
                pad_edges=True,
                stride_length_px=1)
        else:
            this_saliency_matrix = standalone_utils.do_3d_convolution(
                feature_matrix=radar_matrix[i, ...],
                kernel_matrix=kernel_matrix,
                pad_edges=True,
                stride_length_px=1)

        radar_saliency_matrix[i, ...] = this_saliency_matrix[0, ...]

    print('Have created dummy saliency map for all {0:d} examples!'.format(
        num_examples))
    print(SEPARATOR_STRING)

    saliency_matrices = [
        radar_saliency_matrix if k == 0 else predictor_matrices[k]
        for k in range(len(predictor_matrices))
    ]
    saliency_matrices = trainval_io.separate_shear_and_reflectivity(
        list_of_input_matrices=saliency_matrices,
        training_option_dict=training_option_dict)
    denorm_predictor_matrices = trainval_io.separate_shear_and_reflectivity(
        list_of_input_matrices=copy.deepcopy(predictor_matrices),
        training_option_dict=training_option_dict)

    print('Denormalizing model inputs...')
    denorm_predictor_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=denorm_predictor_matrices,
        model_metadata_dict=model_metadata_dict)

    print('Writing saliency maps to file: "{0:s}"...'.format(output_file_name))

    saliency_metadata_dict = saliency_maps.check_metadata(
        component_type_string=model_interpretation.CLASS_COMPONENT_TYPE_STRING,
        target_class=1)

    saliency_maps.write_standard_file(
        pickle_file_name=output_file_name,
        denorm_predictor_matrices=denorm_predictor_matrices,
        saliency_matrices=saliency_matrices,
        full_storm_id_strings=full_storm_id_strings,
        storm_times_unix_sec=storm_times_unix_sec,
        model_file_name=model_file_name,
        metadata_dict=saliency_metadata_dict,
        sounding_pressure_matrix_pa=sounding_pressure_matrix_pa)
示例#9
0
def _run(model_file_name, init_function_name, storm_metafile_name,
         num_examples, top_example_dir_name, component_type_string,
         target_class, layer_name, neuron_indices, channel_index,
         num_iterations, ideal_activation, learning_rate, output_file_name):
    """Runs backwards optimization on a trained CNN.

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param init_function_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param top_example_dir_name: Same.
    :param component_type_string: Same.
    :param target_class: Same.
    :param layer_name: Same.
    :param neuron_indices: Same.
    :param channel_index: Same.
    :param num_iterations: Same.
    :param ideal_activation: Same.
    :param learning_rate: Same.
    :param output_file_name: Same.
    """

    model_interpretation.check_component_type(component_type_string)

    if ideal_activation <= 0:
        ideal_activation = None
    if init_function_name in ['', 'None']:
        init_function_name = None

    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print 'Reading model metadata from: "{0:s}"...'.format(model_metafile_name)
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)

    if init_function_name is None:
        print 'Reading storm metadata from: "{0:s}"...'.format(
            storm_metafile_name)

        storm_ids, storm_times_unix_sec = tracking_io.read_ids_and_times(
            storm_metafile_name)

        if 0 < num_examples < len(storm_ids):
            storm_ids = storm_ids[:num_examples]
            storm_times_unix_sec = storm_times_unix_sec[:num_examples]

        list_of_init_matrices = testing_io.read_specific_examples(
            desired_storm_ids=storm_ids,
            desired_times_unix_sec=storm_times_unix_sec,
            option_dict=model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY],
            top_example_dir_name=top_example_dir_name,
            list_of_layer_operation_dicts=model_metadata_dict[
                cnn.LAYER_OPERATIONS_KEY])[0]

        num_examples = list_of_init_matrices[0].shape[0]
        print SEPARATOR_STRING

    else:
        storm_ids = None
        storm_times_unix_sec = None
        num_examples = 1

        init_function = _create_initializer(
            init_function_name=init_function_name,
            model_metadata_dict=model_metadata_dict)

    print 'Reading model from: "{0:s}"...'.format(model_file_name)
    model_object = cnn.read_model(model_file_name)

    list_of_optimized_matrices = None

    for i in range(num_examples):
        if init_function_name is None:
            this_init_arg = [a[[i], ...] for a in list_of_init_matrices]
        else:
            this_init_arg = init_function

        if component_type_string == CLASS_COMPONENT_TYPE_STRING:
            print(
                '\nOptimizing {0:d}th of {1:d} images for target class {2:d}...'
            ).format(i + 1, num_examples, target_class)

            these_optimized_matrices = backwards_opt.optimize_input_for_class(
                model_object=model_object,
                target_class=target_class,
                init_function_or_matrices=this_init_arg,
                num_iterations=num_iterations,
                learning_rate=learning_rate)

        elif component_type_string == NEURON_COMPONENT_TYPE_STRING:
            print(
                '\nOptimizing {0:d}th of {1:d} images for neuron {2:s} in layer'
                ' "{3:s}"...').format(i + 1, num_examples, str(neuron_indices),
                                      layer_name)

            these_optimized_matrices = backwards_opt.optimize_input_for_neuron(
                model_object=model_object,
                layer_name=layer_name,
                neuron_indices=neuron_indices,
                init_function_or_matrices=this_init_arg,
                num_iterations=num_iterations,
                learning_rate=learning_rate,
                ideal_activation=ideal_activation)

        else:
            print(
                '\nOptimizing {0:d}th of {1:d} images for channel {2:d} in '
                'layer "{3:s}"...').format(i + 1, num_examples, channel_index,
                                           layer_name)

            these_optimized_matrices = backwards_opt.optimize_input_for_channel(
                model_object=model_object,
                layer_name=layer_name,
                channel_index=channel_index,
                init_function_or_matrices=this_init_arg,
                stat_function_for_neuron_activations=K.max,
                num_iterations=num_iterations,
                learning_rate=learning_rate,
                ideal_activation=ideal_activation)

        if list_of_optimized_matrices is None:
            num_matrices = len(these_optimized_matrices)
            list_of_optimized_matrices = [None] * num_matrices

        for k in range(len(list_of_optimized_matrices)):
            if list_of_optimized_matrices[k] is None:
                list_of_optimized_matrices[
                    k] = these_optimized_matrices[k] + 0.
            else:
                list_of_optimized_matrices[k] = numpy.concatenate(
                    (list_of_optimized_matrices[k],
                     these_optimized_matrices[k]),
                    axis=0)

    print SEPARATOR_STRING

    print 'Denormalizing optimized examples...'
    list_of_optimized_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=list_of_optimized_matrices,
        model_metadata_dict=model_metadata_dict)

    if init_function_name is None:
        print 'Denormalizing input examples...'
        list_of_init_matrices = model_interpretation.denormalize_data(
            list_of_input_matrices=list_of_init_matrices,
            model_metadata_dict=model_metadata_dict)

        this_init_arg = list_of_init_matrices
    else:
        this_init_arg = init_function_name + ''

    print 'Writing results to: "{0:s}"...'.format(output_file_name)
    backwards_opt.write_standard_file(
        pickle_file_name=output_file_name,
        list_of_optimized_matrices=list_of_optimized_matrices,
        model_file_name=model_file_name,
        init_function_name_or_matrices=this_init_arg,
        num_iterations=num_iterations,
        learning_rate=learning_rate,
        component_type_string=component_type_string,
        target_class=target_class,
        layer_name=layer_name,
        neuron_indices=neuron_indices,
        channel_index=channel_index,
        ideal_activation=ideal_activation,
        storm_ids=storm_ids,
        storm_times_unix_sec=storm_times_unix_sec)
def _run(cnn_file_name, upconvnet_file_name, top_example_dir_name,
         baseline_storm_metafile_name, trial_storm_metafile_name,
         num_baseline_examples, num_trial_examples, num_novel_examples,
         cnn_feature_layer_name, percent_variance_to_keep, output_file_name):
    """Runs novelty detection.

    This is effectively the main method.

    :param cnn_file_name: See documentation at top of file.
    :param upconvnet_file_name: Same.
    :param top_example_dir_name: Same.
    :param baseline_storm_metafile_name: Same.
    :param trial_storm_metafile_name: Same.
    :param num_baseline_examples: Same.
    :param num_trial_examples: Same.
    :param num_novel_examples: Same.
    :param cnn_feature_layer_name: Same.
    :param percent_variance_to_keep: Same.
    :param output_file_name: Same.
    :raises: ValueError: if dimensions of first CNN input matrix != dimensions
        of upconvnet output.
    """

    print('Reading trained CNN from: "{0:s}"...'.format(cnn_file_name))
    cnn_model_object = cnn.read_model(cnn_file_name)

    print('Reading trained upconvnet from: "{0:s}"...'.format(
        upconvnet_file_name))
    upconvnet_model_object = cnn.read_model(upconvnet_file_name)
    _check_dimensions(cnn_model_object=cnn_model_object,
                      upconvnet_model_object=upconvnet_model_object)

    print('Reading metadata for baseline examples from: "{0:s}"...'.format(
        baseline_storm_metafile_name))
    baseline_full_id_strings, baseline_times_unix_sec = (
        tracking_io.read_ids_and_times(baseline_storm_metafile_name))

    print('Reading metadata for trial examples from: "{0:s}"...'.format(
        trial_storm_metafile_name))
    trial_full_id_strings, trial_times_unix_sec = (
        tracking_io.read_ids_and_times(trial_storm_metafile_name))

    this_dict = _filter_examples(
        trial_full_id_strings=trial_full_id_strings,
        trial_times_unix_sec=trial_times_unix_sec,
        num_trial_examples=num_trial_examples,
        baseline_full_id_strings=baseline_full_id_strings,
        baseline_times_unix_sec=baseline_times_unix_sec,
        num_baseline_examples=num_baseline_examples,
        num_novel_examples=num_novel_examples)

    trial_full_id_strings = this_dict[TRIAL_STORM_IDS_KEY]
    trial_times_unix_sec = this_dict[TRIAL_STORM_TIMES_KEY]
    baseline_full_id_strings = this_dict[BASELINE_STORM_IDS_KEY]
    baseline_times_unix_sec = this_dict[BASELINE_STORM_TIMES_KEY]
    num_novel_examples = this_dict[NUM_NOVEL_EXAMPLES_KEY]

    cnn_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(cnn_file_name)[0])

    print('Reading CNN metadata from: "{0:s}"...'.format(cnn_metafile_name))
    cnn_metadata_dict = cnn.read_model_metadata(cnn_metafile_name)
    print(SEPARATOR_STRING)

    baseline_predictor_matrices = testing_io.read_predictors_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=baseline_full_id_strings,
        desired_times_unix_sec=baseline_times_unix_sec,
        option_dict=cnn_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY],
        layer_operation_dicts=cnn_metadata_dict[cnn.LAYER_OPERATIONS_KEY])[
            testing_io.INPUT_MATRICES_KEY]

    print(SEPARATOR_STRING)

    trial_predictor_matrices = testing_io.read_predictors_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=trial_full_id_strings,
        desired_times_unix_sec=trial_times_unix_sec,
        option_dict=cnn_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY],
        layer_operation_dicts=cnn_metadata_dict[cnn.LAYER_OPERATIONS_KEY])[
            testing_io.INPUT_MATRICES_KEY]

    print(SEPARATOR_STRING)

    novelty_dict = novelty_detection.do_novelty_detection(
        baseline_predictor_matrices=baseline_predictor_matrices,
        trial_predictor_matrices=trial_predictor_matrices,
        cnn_model_object=cnn_model_object,
        cnn_feature_layer_name=cnn_feature_layer_name,
        upconvnet_model_object=upconvnet_model_object,
        num_novel_examples=num_novel_examples,
        multipass=False,
        percent_variance_to_keep=percent_variance_to_keep)

    print(SEPARATOR_STRING)
    print('Denormalizing inputs and outputs of novelty detection...')

    cnn_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY][
        trainval_io.SOUNDING_FIELDS_KEY] = None

    novelty_dict[novelty_detection.BASELINE_MATRIX_KEY] = (
        model_interpretation.denormalize_data(
            list_of_input_matrices=baseline_predictor_matrices[[0]],
            model_metadata_dict=cnn_metadata_dict))

    novelty_dict[novelty_detection.TRIAL_MATRIX_KEY] = (
        model_interpretation.denormalize_data(
            list_of_input_matrices=trial_predictor_matrices[[0]],
            model_metadata_dict=cnn_metadata_dict))

    novelty_dict[novelty_detection.UPCONV_MATRIX_KEY] = (
        model_interpretation.denormalize_data(
            list_of_input_matrices=[
                novelty_dict[novelty_detection.UPCONV_NORM_MATRIX_KEY]
            ],
            model_metadata_dict=cnn_metadata_dict))[0]
    novelty_dict.pop(novelty_detection.UPCONV_NORM_MATRIX_KEY)

    novelty_dict[novelty_detection.UPCONV_SVD_MATRIX_KEY] = (
        model_interpretation.denormalize_data(
            list_of_input_matrices=[
                novelty_dict[novelty_detection.UPCONV_NORM_SVD_MATRIX_KEY]
            ],
            model_metadata_dict=cnn_metadata_dict))[0]
    novelty_dict.pop(novelty_detection.UPCONV_NORM_SVD_MATRIX_KEY)

    novelty_dict = novelty_detection.add_metadata(
        novelty_dict=novelty_dict,
        baseline_full_id_strings=baseline_full_id_strings,
        baseline_times_unix_sec=baseline_times_unix_sec,
        trial_full_id_strings=trial_full_id_strings,
        trial_times_unix_sec=trial_times_unix_sec,
        cnn_file_name=cnn_file_name,
        upconvnet_file_name=upconvnet_file_name)

    print('Writing results to: "{0:s}"...'.format(output_file_name))
    novelty_detection.write_standard_file(novelty_dict=novelty_dict,
                                          pickle_file_name=output_file_name)
示例#11
0
def _run(storm_metafile_name, top_tracking_dir_name, lead_time_seconds,
         output_file_name):
    """Plots spatial distribution of examples (storm objects) in file.

    This is effectively the main method.

    :param storm_metafile_name: See documentation at top of file.
    :param top_tracking_dir_name: Same.
    :param lead_time_seconds: Same.
    :param output_file_name: Same.
    """

    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)

    # Read storm metadata.
    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    orig_full_id_strings, orig_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name))
    orig_primary_id_strings = temporal_tracking.full_to_partial_ids(
        orig_full_id_strings)[0]

    # Find relevant tracking files.
    spc_date_strings = [
        time_conversion.time_to_spc_date_string(t) for t in orig_times_unix_sec
    ]
    spc_date_strings += [
        time_conversion.time_to_spc_date_string(t + lead_time_seconds)
        for t in orig_times_unix_sec
    ]
    spc_date_strings = list(set(spc_date_strings))

    tracking_file_names = []

    for this_spc_date_string in spc_date_strings:
        tracking_file_names += tracking_io.find_files_one_spc_date(
            top_tracking_dir_name=top_tracking_dir_name,
            tracking_scale_metres2=DUMMY_TRACKING_SCALE_METRES2,
            source_name=tracking_utils.SEGMOTION_NAME,
            spc_date_string=this_spc_date_string,
            raise_error_if_missing=False)[0]

    file_times_unix_sec = numpy.array(
        [tracking_io.file_name_to_time(f) for f in tracking_file_names],
        dtype=int)

    num_orig_storm_objects = len(orig_full_id_strings)
    num_files = len(file_times_unix_sec)
    keep_file_flags = numpy.full(num_files, 0, dtype=bool)

    for i in range(num_orig_storm_objects):
        these_flags = numpy.logical_and(
            file_times_unix_sec >= orig_times_unix_sec[i],
            file_times_unix_sec <= orig_times_unix_sec[i] + lead_time_seconds)
        keep_file_flags = numpy.logical_or(keep_file_flags, these_flags)

    del file_times_unix_sec
    keep_file_indices = numpy.where(keep_file_flags)[0]
    tracking_file_names = [tracking_file_names[k] for k in keep_file_indices]

    # Read relevant tracking files.
    num_files = len(tracking_file_names)
    storm_object_tables = [None] * num_files
    print(SEPARATOR_STRING)

    for i in range(num_files):
        print('Reading data from: "{0:s}"...'.format(tracking_file_names[i]))
        this_table = tracking_io.read_file(tracking_file_names[i])

        storm_object_tables[i] = this_table.loc[this_table[
            tracking_utils.PRIMARY_ID_COLUMN].isin(
                numpy.array(orig_primary_id_strings))]

        if i == 0:
            continue

        storm_object_tables[i] = storm_object_tables[i].align(
            storm_object_tables[0], axis=1)[0]

    storm_object_table = pandas.concat(storm_object_tables,
                                       axis=0,
                                       ignore_index=True)
    print(SEPARATOR_STRING)

    # Find relevant storm objects.
    orig_object_rows = tracking_utils.find_storm_objects(
        all_id_strings=storm_object_table[
            tracking_utils.FULL_ID_COLUMN].values.tolist(),
        all_times_unix_sec=storm_object_table[
            tracking_utils.VALID_TIME_COLUMN].values,
        id_strings_to_keep=orig_full_id_strings,
        times_to_keep_unix_sec=orig_times_unix_sec)

    good_object_rows = numpy.array([], dtype=int)

    for i in range(num_orig_storm_objects):
        # Non-merging successors only!

        first_rows = temporal_tracking.find_successors(
            storm_object_table=storm_object_table,
            target_row=orig_object_rows[i],
            num_seconds_forward=lead_time_seconds,
            max_num_sec_id_changes=1,
            change_type_string=temporal_tracking.SPLIT_STRING,
            return_all_on_path=True)

        second_rows = temporal_tracking.find_successors(
            storm_object_table=storm_object_table,
            target_row=orig_object_rows[i],
            num_seconds_forward=lead_time_seconds,
            max_num_sec_id_changes=0,
            change_type_string=temporal_tracking.MERGER_STRING,
            return_all_on_path=True)

        first_rows = first_rows.tolist()
        second_rows = second_rows.tolist()
        these_rows = set(first_rows) & set(second_rows)
        these_rows = numpy.array(list(these_rows), dtype=int)

        good_object_rows = numpy.concatenate((good_object_rows, these_rows))

    good_object_rows = numpy.unique(good_object_rows)
    storm_object_table = storm_object_table.iloc[good_object_rows]

    times_of_day_sec = numpy.mod(
        storm_object_table[tracking_utils.VALID_TIME_COLUMN].values,
        NUM_SECONDS_IN_DAY)
    storm_object_table = storm_object_table.assign(
        **{tracking_utils.VALID_TIME_COLUMN: times_of_day_sec})

    min_plot_latitude_deg = -LATLNG_BUFFER_DEG + numpy.min(
        storm_object_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values)
    max_plot_latitude_deg = LATLNG_BUFFER_DEG + numpy.max(
        storm_object_table[tracking_utils.CENTROID_LATITUDE_COLUMN].values)
    min_plot_longitude_deg = -LATLNG_BUFFER_DEG + numpy.min(
        storm_object_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values)
    max_plot_longitude_deg = LATLNG_BUFFER_DEG + numpy.max(
        storm_object_table[tracking_utils.CENTROID_LONGITUDE_COLUMN].values)

    _, axes_object, basemap_object = (
        plotting_utils.create_equidist_cylindrical_map(
            min_latitude_deg=min_plot_latitude_deg,
            max_latitude_deg=max_plot_latitude_deg,
            min_longitude_deg=min_plot_longitude_deg,
            max_longitude_deg=max_plot_longitude_deg,
            resolution_string='i'))

    plotting_utils.plot_coastlines(basemap_object=basemap_object,
                                   axes_object=axes_object,
                                   line_colour=BORDER_COLOUR,
                                   line_width=BORDER_WIDTH * 2)
    plotting_utils.plot_countries(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  line_colour=BORDER_COLOUR,
                                  line_width=BORDER_WIDTH)
    plotting_utils.plot_states_and_provinces(basemap_object=basemap_object,
                                             axes_object=axes_object,
                                             line_colour=BORDER_COLOUR,
                                             line_width=BORDER_WIDTH)
    plotting_utils.plot_parallels(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  num_parallels=NUM_PARALLELS,
                                  line_width=BORDER_WIDTH)
    plotting_utils.plot_meridians(basemap_object=basemap_object,
                                  axes_object=axes_object,
                                  num_meridians=NUM_MERIDIANS,
                                  line_width=BORDER_WIDTH)

    # colour_bar_object = storm_plotting.plot_storm_tracks(
    #     storm_object_table=storm_object_table, axes_object=axes_object,
    #     basemap_object=basemap_object, colour_map_object=COLOUR_MAP_OBJECT,
    #     colour_min_unix_sec=0, colour_max_unix_sec=NUM_SECONDS_IN_DAY - 1,
    #     line_width=TRACK_LINE_WIDTH,
    #     start_marker_type=None, end_marker_type=None
    # )

    colour_bar_object = storm_plotting.plot_storm_centroids(
        storm_object_table=storm_object_table,
        axes_object=axes_object,
        basemap_object=basemap_object,
        colour_map_object=COLOUR_MAP_OBJECT,
        colour_min_unix_sec=0,
        colour_max_unix_sec=NUM_SECONDS_IN_DAY - 1)

    tick_times_unix_sec = numpy.linspace(0,
                                         NUM_SECONDS_IN_DAY,
                                         num=NUM_HOURS_IN_DAY + 1,
                                         dtype=int)
    tick_times_unix_sec = tick_times_unix_sec[:-1]
    tick_times_unix_sec = tick_times_unix_sec[::2]

    tick_time_strings = [
        time_conversion.unix_sec_to_string(t, COLOUR_BAR_TIME_FORMAT)
        for t in tick_times_unix_sec
    ]

    colour_bar_object.set_ticks(tick_times_unix_sec)
    colour_bar_object.set_ticklabels(tick_time_strings)

    print('Saving figure to: "{0:s}"...'.format(output_file_name))
    pyplot.savefig(output_file_name,
                   dpi=FIGURE_RESOLUTION_DPI,
                   pad_inches=0,
                   bbox_inches='tight')
    pyplot.close()
示例#12
0
def _run(activation_file_name, storm_metafile_name, num_examples,
         allow_whitespace, top_example_dir_name, radar_field_names,
         radar_heights_m_agl, plot_soundings, num_radar_rows,
         num_radar_columns, output_dir_name):
    """Plots many dataset examples (storm objects).

    This is effectively the main method.

    :param activation_file_name: See documentation at top of file.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param allow_whitespace: Same.
    :param top_example_dir_name: Same.
    :param radar_field_names: Same.
    :param radar_heights_m_agl: Same.
    :param plot_soundings: Same.
    :param num_radar_rows: Same.
    :param num_radar_columns: Same.
    :param output_dir_name: Same.
    :raises: TypeError: if activation file contains activations for more than
        one model component.
    """

    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=output_dir_name)

    storm_activations = None
    if activation_file_name in ['', 'None']:
        activation_file_name = None

    if activation_file_name is None:
        print('Reading data from: "{0:s}"...'.format(storm_metafile_name))
        full_storm_id_strings, storm_times_unix_sec = (
            tracking_io.read_ids_and_times(storm_metafile_name))

        training_option_dict = dict()
        training_option_dict[trainval_io.RADAR_FIELDS_KEY] = radar_field_names
        training_option_dict[
            trainval_io.RADAR_HEIGHTS_KEY] = radar_heights_m_agl
        training_option_dict[
            trainval_io.SOUNDING_FIELDS_KEY] = SOUNDING_FIELD_NAMES
        training_option_dict[
            trainval_io.SOUNDING_HEIGHTS_KEY] = SOUNDING_HEIGHTS_M_AGL

        training_option_dict[trainval_io.NUM_ROWS_KEY] = num_radar_rows
        training_option_dict[trainval_io.NUM_COLUMNS_KEY] = num_radar_columns
        training_option_dict[trainval_io.NORMALIZATION_TYPE_KEY] = None
        training_option_dict[trainval_io.TARGET_NAME_KEY] = DUMMY_TARGET_NAME
        training_option_dict[trainval_io.BINARIZE_TARGET_KEY] = False
        training_option_dict[trainval_io.SAMPLING_FRACTIONS_KEY] = None
        training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

        model_metadata_dict = {
            cnn.TRAINING_OPTION_DICT_KEY: training_option_dict,
            cnn.LAYER_OPERATIONS_KEY: None,
        }

    else:
        print('Reading data from: "{0:s}"...'.format(activation_file_name))
        activation_matrix, activation_metadata_dict = (
            model_activation.read_file(activation_file_name))

        num_model_components = activation_matrix.shape[1]
        if num_model_components > 1:
            error_string = (
                'The file should contain activations for only one model '
                'component, not {0:d}.').format(num_model_components)

            raise TypeError(error_string)

        full_storm_id_strings = activation_metadata_dict[
            model_activation.FULL_IDS_KEY]
        storm_times_unix_sec = activation_metadata_dict[
            model_activation.STORM_TIMES_KEY]
        storm_activations = activation_matrix[:, 0]

        model_file_name = activation_metadata_dict[
            model_activation.MODEL_FILE_NAME_KEY]
        model_metafile_name = '{0:s}/model_metadata.p'.format(
            os.path.split(model_file_name)[0])

        print('Reading metadata from: "{0:s}"...'.format(model_metafile_name))
        model_metadata_dict = cnn.read_model_metadata(model_metafile_name)

        training_option_dict = model_metadata_dict[
            cnn.TRAINING_OPTION_DICT_KEY]
        training_option_dict[trainval_io.NORMALIZATION_TYPE_KEY] = None
        training_option_dict[trainval_io.SAMPLING_FRACTIONS_KEY] = None
        training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

        model_metadata_dict[
            cnn.TRAINING_OPTION_DICT_KEY] = training_option_dict

    model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY][
        trainval_io.UPSAMPLE_REFLECTIVITY_KEY] = False

    if 0 < num_examples < len(full_storm_id_strings):
        full_storm_id_strings = full_storm_id_strings[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]
        if storm_activations is not None:
            storm_activations = storm_activations[:num_examples]

    print(SEPARATOR_STRING)
    list_of_predictor_matrices = testing_io.read_specific_examples(
        desired_full_id_strings=full_storm_id_strings,
        desired_times_unix_sec=storm_times_unix_sec,
        option_dict=model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY],
        top_example_dir_name=top_example_dir_name,
        list_of_layer_operation_dicts=model_metadata_dict[
            cnn.LAYER_OPERATIONS_KEY])[0]
    print(SEPARATOR_STRING)

    plot_examples(list_of_predictor_matrices=list_of_predictor_matrices,
                  model_metadata_dict=model_metadata_dict,
                  output_dir_name=output_dir_name,
                  plot_soundings=plot_soundings,
                  allow_whitespace=allow_whitespace,
                  pmm_flag=False,
                  full_storm_id_strings=full_storm_id_strings,
                  storm_times_unix_sec=storm_times_unix_sec,
                  storm_activations=storm_activations)
def _run(model_file_name, init_function_name, storm_metafile_name,
         num_examples, top_example_dir_name, component_type_string,
         target_class, layer_name, neuron_indices, channel_index,
         num_iterations, ideal_activation, learning_rate, l2_weight,
         radar_constraint_weight, minmax_constraint_weight, output_file_name):
    """Runs backwards optimization on a trained CNN.

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param init_function_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param top_example_dir_name: Same.
    :param component_type_string: Same.
    :param target_class: Same.
    :param layer_name: Same.
    :param neuron_indices: Same.
    :param channel_index: Same.
    :param num_iterations: Same.
    :param ideal_activation: Same.
    :param learning_rate: Same.
    :param l2_weight: Same.
    :param radar_constraint_weight: Same.
    :param minmax_constraint_weight: Same.
    :param output_file_name: Same.
    """

    if l2_weight <= 0:
        l2_weight = None
    if radar_constraint_weight <= 0:
        radar_constraint_weight = None
    if minmax_constraint_weight <= 0:
        minmax_constraint_weight = None
    if ideal_activation <= 0:
        ideal_activation = None
    if init_function_name in ['', 'None']:
        init_function_name = None

    model_interpretation.check_component_type(component_type_string)

    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print(
        'Reading model metadata from: "{0:s}"...'.format(model_metafile_name))
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)

    input_matrices = None
    init_function = None
    full_storm_id_strings = None
    storm_times_unix_sec = None
    sounding_pressure_matrix_pa = None

    if init_function_name is None:
        print('Reading storm metadata from: "{0:s}"...'.format(
            storm_metafile_name))

        full_storm_id_strings, storm_times_unix_sec = (
            tracking_io.read_ids_and_times(storm_metafile_name))

        if 0 < num_examples < len(full_storm_id_strings):
            full_storm_id_strings = full_storm_id_strings[:num_examples]
            storm_times_unix_sec = storm_times_unix_sec[:num_examples]

        example_dict = testing_io.read_predictors_specific_examples(
            top_example_dir_name=top_example_dir_name,
            desired_full_id_strings=full_storm_id_strings,
            desired_times_unix_sec=storm_times_unix_sec,
            option_dict=model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY],
            layer_operation_dicts=model_metadata_dict[
                cnn.LAYER_OPERATIONS_KEY])
        print(SEPARATOR_STRING)

        input_matrices = example_dict[testing_io.INPUT_MATRICES_KEY]
        sounding_pressure_matrix_pa = example_dict[
            testing_io.SOUNDING_PRESSURES_KEY]
        num_examples = input_matrices[0].shape[0]
    else:
        num_examples = 1
        init_function = _create_initializer(
            init_function_name=init_function_name,
            model_metadata_dict=model_metadata_dict)

    print('Reading model from: "{0:s}"...'.format(model_file_name))
    model_object = cnn.read_model(model_file_name)

    output_matrices = None
    initial_activations = numpy.full(num_examples, numpy.nan)
    final_activations = numpy.full(num_examples, numpy.nan)

    for i in range(num_examples):
        if init_function_name is None:
            this_init_arg = [a[[i], ...] for a in input_matrices]
        else:
            this_init_arg = init_function

        if component_type_string == CLASS_COMPONENT_TYPE_STRING:
            print((
                '\nOptimizing {0:d}th of {1:d} images for target class {2:d}...'
            ).format(i + 1, num_examples, target_class))

            this_result_dict = backwards_opt.optimize_input_for_class(
                model_object=model_object,
                target_class=target_class,
                init_function_or_matrices=this_init_arg,
                num_iterations=num_iterations,
                learning_rate=learning_rate,
                l2_weight=l2_weight,
                radar_constraint_weight=radar_constraint_weight,
                minmax_constraint_weight=minmax_constraint_weight,
                model_metadata_dict=model_metadata_dict)

        elif component_type_string == NEURON_COMPONENT_TYPE_STRING:
            print((
                '\nOptimizing {0:d}th of {1:d} images for neuron {2:s} in layer'
                ' "{3:s}"...').format(i + 1, num_examples, str(neuron_indices),
                                      layer_name))

            this_result_dict = backwards_opt.optimize_input_for_neuron(
                model_object=model_object,
                layer_name=layer_name,
                neuron_indices=neuron_indices,
                init_function_or_matrices=this_init_arg,
                num_iterations=num_iterations,
                learning_rate=learning_rate,
                l2_weight=l2_weight,
                ideal_activation=ideal_activation,
                radar_constraint_weight=radar_constraint_weight,
                minmax_constraint_weight=minmax_constraint_weight,
                model_metadata_dict=model_metadata_dict)

        else:
            print(('\nOptimizing {0:d}th of {1:d} images for channel {2:d} in '
                   'layer "{3:s}"...').format(i + 1, num_examples,
                                              channel_index, layer_name))

            this_result_dict = backwards_opt.optimize_input_for_channel(
                model_object=model_object,
                layer_name=layer_name,
                channel_index=channel_index,
                init_function_or_matrices=this_init_arg,
                stat_function_for_neuron_activations=K.max,
                num_iterations=num_iterations,
                learning_rate=learning_rate,
                l2_weight=l2_weight,
                ideal_activation=ideal_activation,
                radar_constraint_weight=radar_constraint_weight,
                minmax_constraint_weight=minmax_constraint_weight,
                model_metadata_dict=model_metadata_dict)

        initial_activations[i] = this_result_dict[
            backwards_opt.INITIAL_ACTIVATION_KEY]
        final_activations[i] = this_result_dict[
            backwards_opt.FINAL_ACTIVATION_KEY]
        these_output_matrices = this_result_dict[
            backwards_opt.NORM_OUTPUT_MATRICES_KEY]

        if output_matrices is None:
            output_matrices = [None] * len(these_output_matrices)

        for k in range(len(output_matrices)):
            if output_matrices[k] is None:
                output_matrices[k] = these_output_matrices[k] + 0.
            else:
                output_matrices[k] = numpy.concatenate(
                    (output_matrices[k], these_output_matrices[k]), axis=0)

        if init_function_name is None:
            continue

        these_input_matrices = this_result_dict[
            backwards_opt.NORM_INPUT_MATRICES_KEY]

        if input_matrices is None:
            input_matrices = [None] * len(these_input_matrices)

        for k in range(len(input_matrices)):
            if input_matrices[k] is None:
                input_matrices[k] = these_input_matrices[k] + 0.
            else:
                input_matrices[k] = numpy.concatenate(
                    (input_matrices[k], these_input_matrices[k]), axis=0)

    print(SEPARATOR_STRING)
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]

    print('Denormalizing input examples...')
    input_matrices = trainval_io.separate_shear_and_reflectivity(
        list_of_input_matrices=input_matrices,
        training_option_dict=training_option_dict)

    input_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=input_matrices,
        model_metadata_dict=model_metadata_dict)

    print('Denormalizing optimized examples...')
    output_matrices = trainval_io.separate_shear_and_reflectivity(
        list_of_input_matrices=output_matrices,
        training_option_dict=training_option_dict)

    output_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=output_matrices,
        model_metadata_dict=model_metadata_dict)

    print('Writing results to: "{0:s}"...'.format(output_file_name))
    bwo_metadata_dict = backwards_opt.check_metadata(
        component_type_string=component_type_string,
        num_iterations=num_iterations,
        learning_rate=learning_rate,
        target_class=target_class,
        layer_name=layer_name,
        ideal_activation=ideal_activation,
        neuron_indices=neuron_indices,
        channel_index=channel_index,
        l2_weight=l2_weight,
        radar_constraint_weight=radar_constraint_weight,
        minmax_constraint_weight=minmax_constraint_weight)

    backwards_opt.write_standard_file(
        pickle_file_name=output_file_name,
        denorm_input_matrices=input_matrices,
        denorm_output_matrices=output_matrices,
        initial_activations=initial_activations,
        final_activations=final_activations,
        model_file_name=model_file_name,
        metadata_dict=bwo_metadata_dict,
        full_storm_id_strings=full_storm_id_strings,
        storm_times_unix_sec=storm_times_unix_sec,
        sounding_pressure_matrix_pa=sounding_pressure_matrix_pa)
def _run(input_example_dir_name, storm_metafile_name, num_examples_in_subset,
         subset_randomly, output_example_file_name):
    """Extracts desired examples and writes them to one file.

    This is effectively the main method.

    :param input_example_dir_name: See documentation at top of file.
    :param storm_metafile_name: Same.
    :param num_examples_in_subset: Same.
    :param subset_randomly: Same.
    :param output_example_file_name: Same.
    """

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    example_id_strings, example_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name))

    if not 0 < num_examples_in_subset < len(example_id_strings):
        num_examples_in_subset = None

    if num_examples_in_subset is not None:
        if subset_randomly:
            these_indices = numpy.linspace(0,
                                           len(example_id_strings) - 1,
                                           num=len(example_id_strings),
                                           dtype=int)
            these_indices = numpy.random.choice(these_indices,
                                                size=num_examples_in_subset,
                                                replace=False)

            example_id_strings = [example_id_strings[k] for k in these_indices]
            example_times_unix_sec = example_times_unix_sec[these_indices]
        else:
            example_id_strings = example_id_strings[:num_examples_in_subset]
            example_times_unix_sec = (
                example_times_unix_sec[:num_examples_in_subset])

    example_spc_date_strings = numpy.array([
        time_conversion.time_to_spc_date_string(t)
        for t in example_times_unix_sec
    ])
    spc_date_strings = numpy.unique(example_spc_date_strings)

    example_file_name_by_day = [
        input_examples.find_example_file(
            top_directory_name=input_example_dir_name,
            shuffled=False,
            spc_date_string=d,
            raise_error_if_missing=True) for d in spc_date_strings
    ]

    num_days = len(spc_date_strings)

    for i in range(num_days):
        print('Reading data from: "{0:s}"...'.format(
            example_file_name_by_day[i]))
        all_example_dict = input_examples.read_example_file(
            netcdf_file_name=example_file_name_by_day[i],
            read_all_target_vars=True)

        these_indices = numpy.where(
            example_spc_date_strings == spc_date_strings[i])[0]

        desired_indices = tracking_utils.find_storm_objects(
            all_id_strings=all_example_dict[input_examples.FULL_IDS_KEY],
            all_times_unix_sec=all_example_dict[
                input_examples.STORM_TIMES_KEY],
            id_strings_to_keep=[example_id_strings[k] for k in these_indices],
            times_to_keep_unix_sec=example_times_unix_sec[these_indices],
            allow_missing=False)

        desired_example_dict = input_examples.subset_examples(
            example_dict=all_example_dict, indices_to_keep=desired_indices)

        print('Writing {0:d} desired examples to: "{1:s}"...'.format(
            len(desired_indices), output_example_file_name))
        input_examples.write_example_file(
            netcdf_file_name=output_example_file_name,
            example_dict=desired_example_dict,
            append_to_file=i > 0)
def _run(upconvnet_file_name, storm_metafile_name, num_examples,
         top_example_dir_name, top_output_dir_name):
    """Plots upconvnet reconstructions of many examples (storm objects).

    This is effectively the main method.

    :param upconvnet_file_name: See documentation at top of file.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param top_example_dir_name: Same.
    :param top_output_dir_name: Same.
    """

    print 'Reading trained upconvnet from: "{0:s}"...'.format(
        upconvnet_file_name)
    upconvnet_model_object = cnn.read_model(upconvnet_file_name)
    upconvnet_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(upconvnet_file_name)[0]
    )

    print 'Reading upconvnet metadata from: "{0:s}"...'.format(
        upconvnet_metafile_name)
    upconvnet_metadata_dict = upconvnet.read_model_metadata(
        upconvnet_metafile_name)
    cnn_file_name = upconvnet_metadata_dict[upconvnet.CNN_FILE_KEY]

    print 'Reading trained CNN from: "{0:s}"...'.format(cnn_file_name)
    cnn_model_object = cnn.read_model(cnn_file_name)
    cnn_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(cnn_file_name)[0]
    )

    print 'Reading CNN metadata from: "{0:s}"...'.format(cnn_metafile_name)
    cnn_metadata_dict = cnn.read_model_metadata(cnn_metafile_name)
    training_option_dict = cnn_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]

    print 'Reading storm IDs and times from: "{0:s}"...'.format(
        storm_metafile_name)
    storm_ids, storm_times_unix_sec = tracking_io.read_ids_and_times(
        storm_metafile_name)

    if 0 < num_examples < len(storm_ids):
        storm_ids = storm_ids[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    print SEPARATOR_STRING
    list_of_predictor_matrices = testing_io.read_specific_examples(
        desired_storm_ids=storm_ids,
        desired_times_unix_sec=storm_times_unix_sec,
        option_dict=training_option_dict,
        top_example_dir_name=top_example_dir_name,
        list_of_layer_operation_dicts=cnn_metadata_dict[
            cnn.LAYER_OPERATIONS_KEY]
    )[0]
    print SEPARATOR_STRING

    actual_radar_matrix = list_of_predictor_matrices[0]
    have_soundings = training_option_dict[trainval_io.SOUNDING_FIELDS_KEY]

    if have_soundings:
        sounding_matrix = list_of_predictor_matrices[-1]
    else:
        sounding_matrix = None

    feature_matrix = cnn.apply_2d_or_3d_cnn(
        model_object=cnn_model_object, radar_image_matrix=actual_radar_matrix,
        sounding_matrix=sounding_matrix, verbose=True, return_features=True,
        feature_layer_name=upconvnet_metadata_dict[
            upconvnet.CNN_FEATURE_LAYER_KEY]
    )
    print '\n'

    reconstructed_radar_matrix = upconvnet.apply_upconvnet(
        model_object=upconvnet_model_object, feature_matrix=feature_matrix,
        verbose=True)
    print '\n'

    print 'Denormalizing actual and reconstructed radar images...'

    cnn_metadata_dict[
        cnn.TRAINING_OPTION_DICT_KEY][trainval_io.SOUNDING_FIELDS_KEY] = None

    actual_radar_matrix = model_interpretation.denormalize_data(
        list_of_input_matrices=[actual_radar_matrix],
        model_metadata_dict=cnn_metadata_dict
    )[0]

    reconstructed_radar_matrix = model_interpretation.denormalize_data(
        list_of_input_matrices=[reconstructed_radar_matrix],
        model_metadata_dict=cnn_metadata_dict
    )[0]

    print SEPARATOR_STRING

    actual_output_dir_name = '{0:s}/actual_images'.format(top_output_dir_name)
    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=actual_output_dir_name)

    # TODO(thunderhoser): Calling a method in another script is hacky.  If this
    # method is going to be reused, should be in a module.
    plot_input_examples.plot_examples(
        list_of_predictor_matrices=[actual_radar_matrix], storm_ids=storm_ids,
        storm_times_unix_sec=storm_times_unix_sec,
        model_metadata_dict=cnn_metadata_dict,
        output_dir_name=actual_output_dir_name)
    print SEPARATOR_STRING

    reconstructed_output_dir_name = '{0:s}/reconstructed_images'.format(
        top_output_dir_name)
    file_system_utils.mkdir_recursive_if_necessary(
        directory_name=reconstructed_output_dir_name)

    plot_input_examples.plot_examples(
        list_of_predictor_matrices=[reconstructed_radar_matrix],
        storm_ids=storm_ids, storm_times_unix_sec=storm_times_unix_sec,
        model_metadata_dict=cnn_metadata_dict,
        output_dir_name=reconstructed_output_dir_name)
示例#16
0
def _run(model_file_name, target_class, target_layer_name,
         top_example_dir_name, storm_metafile_name, num_examples,
         output_file_name):
    """Runs Grad-CAM (gradient-weighted class-activation maps).

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param target_class: Same.
    :param target_layer_name: Same.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param output_file_name: Same.
    """

    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)

    # Read model and metadata.
    print('Reading model from: "{0:s}"...'.format(model_file_name))
    model_object = cnn.read_model(model_file_name)

    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print(
        'Reading model metadata from: "{0:s}"...'.format(model_metafile_name))
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    full_id_strings, storm_times_unix_sec = tracking_io.read_ids_and_times(
        storm_metafile_name)

    print(SEPARATOR_STRING)

    if 0 < num_examples < len(full_id_strings):
        full_id_strings = full_id_strings[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    list_of_input_matrices, sounding_pressure_matrix_pascals = (
        testing_io.read_specific_examples(
            top_example_dir_name=top_example_dir_name,
            desired_full_id_strings=full_id_strings,
            desired_times_unix_sec=storm_times_unix_sec,
            option_dict=training_option_dict,
            list_of_layer_operation_dicts=model_metadata_dict[
                cnn.LAYER_OPERATIONS_KEY]))
    print(SEPARATOR_STRING)

    list_of_cam_matrices = None
    list_of_guided_cam_matrices = None
    new_model_object = None

    num_examples = len(full_id_strings)

    for i in range(num_examples):
        print('Running Grad-CAM for example {0:d} of {1:d}...'.format(
            i + 1, num_examples))

        these_input_matrices = [a[[i], ...] for a in list_of_input_matrices]
        these_cam_matrices = gradcam.run_gradcam(
            model_object=model_object,
            list_of_input_matrices=these_input_matrices,
            target_class=target_class,
            target_layer_name=target_layer_name)

        print('Running guided Grad-CAM for example {0:d} of {1:d}...'.format(
            i + 1, num_examples))

        these_guided_cam_matrices, new_model_object = (
            gradcam.run_guided_gradcam(
                orig_model_object=model_object,
                list_of_input_matrices=these_input_matrices,
                target_layer_name=target_layer_name,
                list_of_cam_matrices=these_cam_matrices,
                new_model_object=new_model_object))

        if list_of_cam_matrices is None:
            list_of_cam_matrices = copy.deepcopy(these_cam_matrices)
            list_of_guided_cam_matrices = copy.deepcopy(
                these_guided_cam_matrices)
        else:
            for j in range(len(these_cam_matrices)):
                if list_of_cam_matrices[j] is None:
                    continue

                list_of_cam_matrices[j] = numpy.concatenate(
                    (list_of_cam_matrices[j], these_cam_matrices[j]), axis=0)

                list_of_guided_cam_matrices[j] = numpy.concatenate(
                    (list_of_guided_cam_matrices[j],
                     these_guided_cam_matrices[j]),
                    axis=0)

    print(SEPARATOR_STRING)
    upsample_refl = training_option_dict[trainval_io.UPSAMPLE_REFLECTIVITY_KEY]

    if upsample_refl:
        list_of_cam_matrices[0] = numpy.expand_dims(list_of_cam_matrices[0],
                                                    axis=-1)

        num_channels = list_of_input_matrices[0].shape[-1]
        list_of_cam_matrices[0] = numpy.repeat(a=list_of_cam_matrices[0],
                                               repeats=num_channels,
                                               axis=-1)

        list_of_cam_matrices = trainval_io.separate_shear_and_reflectivity(
            list_of_input_matrices=list_of_cam_matrices,
            training_option_dict=training_option_dict)

        list_of_cam_matrices[0] = list_of_cam_matrices[0][..., 0]
        list_of_cam_matrices[1] = list_of_cam_matrices[1][..., 0]

    list_of_guided_cam_matrices = trainval_io.separate_shear_and_reflectivity(
        list_of_input_matrices=list_of_guided_cam_matrices,
        training_option_dict=training_option_dict)

    print('Denormalizing predictors...')
    list_of_input_matrices = trainval_io.separate_shear_and_reflectivity(
        list_of_input_matrices=list_of_input_matrices,
        training_option_dict=training_option_dict)

    list_of_input_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=list_of_input_matrices,
        model_metadata_dict=model_metadata_dict)

    print('Writing class-activation maps to file: "{0:s}"...'.format(
        output_file_name))

    gradcam.write_standard_file(
        pickle_file_name=output_file_name,
        list_of_input_matrices=list_of_input_matrices,
        list_of_cam_matrices=list_of_cam_matrices,
        list_of_guided_cam_matrices=list_of_guided_cam_matrices,
        model_file_name=model_file_name,
        full_id_strings=full_id_strings,
        storm_times_unix_sec=storm_times_unix_sec,
        target_class=target_class,
        target_layer_name=target_layer_name,
        sounding_pressure_matrix_pascals=sounding_pressure_matrix_pascals)
def _run(model_file_name, target_class, target_layer_name,
         top_example_dir_name, storm_metafile_name, num_examples,
         randomize_weights, cascading_random, output_file_name):
    """Runs Grad-CAM (gradient-weighted class-activation maps).

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param target_class: Same.
    :param target_layer_name: Same.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param randomize_weights: Same.
    :param cascading_random: Same.
    :param output_file_name: Same.
    """

    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)

    # Read model and metadata.
    print('Reading model from: "{0:s}"...'.format(model_file_name))
    model_object = cnn.read_model(model_file_name)

    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print(
        'Reading model metadata from: "{0:s}"...'.format(model_metafile_name))
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

    output_dir_name, pathless_output_file_name = os.path.split(
        output_file_name)
    extensionless_output_file_name, output_file_extension = os.path.splitext(
        pathless_output_file_name)

    if randomize_weights:
        conv_dense_layer_names = _find_conv_and_dense_layers(model_object)
        conv_dense_layer_names.reverse()
        num_sets = len(conv_dense_layer_names)
    else:
        conv_dense_layer_names = []
        num_sets = 1

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    full_storm_id_strings, storm_times_unix_sec = (
        tracking_io.read_ids_and_times(storm_metafile_name))

    print(SEPARATOR_STRING)

    if 0 < num_examples < len(full_storm_id_strings):
        full_storm_id_strings = full_storm_id_strings[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    example_dict = testing_io.read_predictors_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=full_storm_id_strings,
        desired_times_unix_sec=storm_times_unix_sec,
        option_dict=training_option_dict,
        layer_operation_dicts=model_metadata_dict[cnn.LAYER_OPERATIONS_KEY])
    print(SEPARATOR_STRING)

    predictor_matrices = example_dict[testing_io.INPUT_MATRICES_KEY]
    sounding_pressure_matrix_pa = (
        example_dict[testing_io.SOUNDING_PRESSURES_KEY])

    print('Denormalizing model inputs...')
    denorm_predictor_matrices = trainval_io.separate_shear_and_reflectivity(
        list_of_input_matrices=copy.deepcopy(predictor_matrices),
        training_option_dict=training_option_dict)
    denorm_predictor_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=denorm_predictor_matrices,
        model_metadata_dict=model_metadata_dict)
    print(SEPARATOR_STRING)

    for k in range(num_sets):
        if randomize_weights:
            if cascading_random:
                _reset_weights_in_layer(model_object=model_object,
                                        layer_name=conv_dense_layer_names[k])

                this_model_object = model_object

                this_output_file_name = (
                    '{0:s}/{1:s}_cascading-random_{2:s}{3:s}').format(
                        output_dir_name, extensionless_output_file_name,
                        conv_dense_layer_names[k].replace('_', '-'),
                        output_file_extension)
            else:
                this_model_object = keras.models.Model.from_config(
                    model_object.get_config())
                this_model_object.set_weights(model_object.get_weights())

                _reset_weights_in_layer(model_object=this_model_object,
                                        layer_name=conv_dense_layer_names[k])

                this_output_file_name = '{0:s}/{1:s}_random_{2:s}{3:s}'.format(
                    output_dir_name, extensionless_output_file_name,
                    conv_dense_layer_names[k].replace('_', '-'),
                    output_file_extension)
        else:
            this_model_object = model_object
            this_output_file_name = output_file_name

        # print(K.eval(this_model_object.get_layer(name='dense_53').weights[0]))

        these_cam_matrices, these_guided_cam_matrices = (
            _run_gradcam_one_weight_set(
                model_object=this_model_object,
                target_class=target_class,
                target_layer_name=target_layer_name,
                predictor_matrices=predictor_matrices,
                training_option_dict=training_option_dict))

        print('Writing results to file: "{0:s}"...'.format(
            this_output_file_name))
        gradcam.write_standard_file(
            pickle_file_name=this_output_file_name,
            denorm_predictor_matrices=denorm_predictor_matrices,
            cam_matrices=these_cam_matrices,
            guided_cam_matrices=these_guided_cam_matrices,
            full_storm_id_strings=full_storm_id_strings,
            storm_times_unix_sec=storm_times_unix_sec,
            model_file_name=model_file_name,
            target_class=target_class,
            target_layer_name=target_layer_name,
            sounding_pressure_matrix_pa=sounding_pressure_matrix_pa)

        print(SEPARATOR_STRING)
def _run(model_file_name, target_class, target_layer_name,
         top_example_dir_name, storm_metafile_name, num_examples,
         output_file_name):
    """Runs Grad-CAM (gradient-weighted class-activation maps).

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param target_class: Same.
    :param target_layer_name: Same.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param output_file_name: Same.
    """

    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)

    # Read model and metadata.
    print 'Reading model from: "{0:s}"...'.format(model_file_name)
    model_object = cnn.read_model(model_file_name)
    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print 'Reading model metadata from: "{0:s}"...'.format(model_metafile_name)
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

    print 'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name)
    storm_ids, storm_times_unix_sec = tracking_io.read_ids_and_times(
        storm_metafile_name)
    print SEPARATOR_STRING

    if 0 < num_examples < len(storm_ids):
        storm_ids = storm_ids[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    list_of_input_matrices, sounding_pressure_matrix_pascals = (
        testing_io.read_specific_examples(
            top_example_dir_name=top_example_dir_name,
            desired_storm_ids=storm_ids,
            desired_times_unix_sec=storm_times_unix_sec,
            option_dict=training_option_dict,
            list_of_layer_operation_dicts=model_metadata_dict[
                cnn.LAYER_OPERATIONS_KEY]))
    print SEPARATOR_STRING

    class_activation_matrix = None
    ggradcam_output_matrix = None
    new_model_object = None

    num_examples = len(storm_ids)

    for i in range(num_examples):
        print 'Running Grad-CAM for example {0:d} of {1:d}...'.format(
            i + 1, num_examples)

        these_input_matrices = [a[[i], ...] for a in list_of_input_matrices]
        this_class_activation_matrix = gradcam.run_gradcam(
            model_object=model_object,
            list_of_input_matrices=these_input_matrices,
            target_class=target_class,
            target_layer_name=target_layer_name)

        print 'Running guided Grad-CAM for example {0:d} of {1:d}...'.format(
            i + 1, num_examples)

        this_ggradcam_output_matrix, new_model_object = (
            gradcam.run_guided_gradcam(
                orig_model_object=model_object,
                list_of_input_matrices=these_input_matrices,
                target_layer_name=target_layer_name,
                class_activation_matrix=this_class_activation_matrix,
                new_model_object=new_model_object))

        this_class_activation_matrix = numpy.expand_dims(
            this_class_activation_matrix, axis=0)
        this_ggradcam_output_matrix = numpy.expand_dims(
            this_ggradcam_output_matrix, axis=0)

        if class_activation_matrix is None:
            class_activation_matrix = this_class_activation_matrix + 0.
            ggradcam_output_matrix = this_ggradcam_output_matrix + 0.
        else:
            class_activation_matrix = numpy.concatenate(
                (class_activation_matrix, this_class_activation_matrix),
                axis=0)
            ggradcam_output_matrix = numpy.concatenate(
                (ggradcam_output_matrix, this_ggradcam_output_matrix), axis=0)

    print SEPARATOR_STRING

    print 'Denormalizing predictors...'
    list_of_input_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=list_of_input_matrices,
        model_metadata_dict=model_metadata_dict)

    print 'Writing class-activation maps to file: "{0:s}"...'.format(
        output_file_name)
    gradcam.write_standard_file(
        pickle_file_name=output_file_name,
        list_of_input_matrices=list_of_input_matrices,
        class_activation_matrix=class_activation_matrix,
        ggradcam_output_matrix=ggradcam_output_matrix,
        model_file_name=model_file_name,
        storm_ids=storm_ids,
        storm_times_unix_sec=storm_times_unix_sec,
        target_class=target_class,
        target_layer_name=target_layer_name,
        sounding_pressure_matrix_pascals=sounding_pressure_matrix_pascals)
示例#19
0
def _run(model_file_name, layer_names, top_example_dir_name,
         storm_metafile_name, num_examples, top_output_dir_name):
    """Evaluates CNN (convolutional neural net) predictions.

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param layer_names: Same.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param top_output_dir_name: Same.
    :raises: ValueError: if feature maps do not have 2 or 3 spatial dimensions.
    """

    print('Reading model from: "{0:s}"...'.format(model_file_name))
    model_object = cnn.read_model(model_file_name)

    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print(
        'Reading model metadata from: "{0:s}"...'.format(model_metafile_name))
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

    print(
        'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name))
    full_id_strings, storm_times_unix_sec = tracking_io.read_ids_and_times(
        storm_metafile_name)

    print(SEPARATOR_STRING)

    if 0 < num_examples < len(full_id_strings):
        full_id_strings = full_id_strings[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    list_of_predictor_matrices = testing_io.read_specific_examples(
        top_example_dir_name=top_example_dir_name,
        desired_full_id_strings=full_id_strings,
        desired_times_unix_sec=storm_times_unix_sec,
        option_dict=training_option_dict,
        list_of_layer_operation_dicts=model_metadata_dict[
            cnn.LAYER_OPERATIONS_KEY])[0]

    print(SEPARATOR_STRING)

    include_soundings = (training_option_dict[trainval_io.SOUNDING_FIELDS_KEY]
                         is not None)

    if include_soundings:
        sounding_matrix = list_of_predictor_matrices[-1]
    else:
        sounding_matrix = None

    num_layers = len(layer_names)
    feature_matrix_by_layer = [None] * num_layers

    for k in range(num_layers):
        if model_metadata_dict[cnn.CONV_2D3D_KEY]:
            if training_option_dict[trainval_io.UPSAMPLE_REFLECTIVITY_KEY]:
                feature_matrix_by_layer[k] = cnn.apply_2d_or_3d_cnn(
                    model_object=model_object,
                    radar_image_matrix=list_of_predictor_matrices[0],
                    sounding_matrix=sounding_matrix,
                    return_features=True,
                    feature_layer_name=layer_names[k])
            else:
                feature_matrix_by_layer[k] = cnn.apply_2d3d_cnn(
                    model_object=model_object,
                    reflectivity_matrix_dbz=list_of_predictor_matrices[0],
                    azimuthal_shear_matrix_s01=list_of_predictor_matrices[1],
                    sounding_matrix=sounding_matrix,
                    return_features=True,
                    feature_layer_name=layer_names[k])
        else:
            feature_matrix_by_layer[k] = cnn.apply_2d_or_3d_cnn(
                model_object=model_object,
                radar_image_matrix=list_of_predictor_matrices[0],
                sounding_matrix=sounding_matrix,
                return_features=True,
                feature_layer_name=layer_names[k])

    for k in range(num_layers):
        this_output_dir_name = '{0:s}/{1:s}'.format(top_output_dir_name,
                                                    layer_names[k])

        file_system_utils.mkdir_recursive_if_necessary(
            directory_name=this_output_dir_name)

        _plot_feature_maps_one_layer(feature_matrix=feature_matrix_by_layer[k],
                                     full_id_strings=full_id_strings,
                                     storm_times_unix_sec=storm_times_unix_sec,
                                     layer_name=layer_names[k],
                                     output_dir_name=this_output_dir_name)

        print(SEPARATOR_STRING)
def _run(model_file_name, component_type_string, target_class, layer_name,
         ideal_activation, neuron_indices, channel_index, top_example_dir_name,
         storm_metafile_name, num_examples, output_file_name):
    """Computes saliency map for each storm object and each model component.

    This is effectively the main method.

    :param model_file_name: See documentation at top of file.
    :param component_type_string: Same.
    :param target_class: Same.
    :param layer_name: Same.
    :param ideal_activation: Same.
    :param neuron_indices: Same.
    :param channel_index: Same.
    :param top_example_dir_name: Same.
    :param storm_metafile_name: Same.
    :param num_examples: Same.
    :param output_file_name: Same.
    """

    # Check input args.
    file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name)
    model_interpretation.check_component_type(component_type_string)

    # Read model and metadata.
    print 'Reading model from: "{0:s}"...'.format(model_file_name)
    model_object = cnn.read_model(model_file_name)
    model_metafile_name = '{0:s}/model_metadata.p'.format(
        os.path.split(model_file_name)[0])

    print 'Reading model metadata from: "{0:s}"...'.format(model_metafile_name)
    model_metadata_dict = cnn.read_model_metadata(model_metafile_name)
    training_option_dict = model_metadata_dict[cnn.TRAINING_OPTION_DICT_KEY]
    training_option_dict[trainval_io.REFLECTIVITY_MASK_KEY] = None

    print 'Reading storm metadata from: "{0:s}"...'.format(storm_metafile_name)
    storm_ids, storm_times_unix_sec = tracking_io.read_ids_and_times(
        storm_metafile_name)
    print SEPARATOR_STRING

    if 0 < num_examples < len(storm_ids):
        storm_ids = storm_ids[:num_examples]
        storm_times_unix_sec = storm_times_unix_sec[:num_examples]

    list_of_input_matrices, sounding_pressure_matrix_pascals = (
        testing_io.read_specific_examples(
            top_example_dir_name=top_example_dir_name,
            desired_storm_ids=storm_ids,
            desired_times_unix_sec=storm_times_unix_sec,
            option_dict=training_option_dict,
            list_of_layer_operation_dicts=model_metadata_dict[
                cnn.LAYER_OPERATIONS_KEY]))
    print SEPARATOR_STRING

    if component_type_string == CLASS_COMPONENT_TYPE_STRING:
        print 'Computing saliency maps for target class {0:d}...'.format(
            target_class)

        list_of_saliency_matrices = (
            saliency_maps.get_saliency_maps_for_class_activation(
                model_object=model_object,
                target_class=target_class,
                list_of_input_matrices=list_of_input_matrices))

    elif component_type_string == NEURON_COMPONENT_TYPE_STRING:
        print('Computing saliency maps for neuron {0:s} in layer "{1:s}"...'
              ).format(str(neuron_indices), layer_name)

        list_of_saliency_matrices = (
            saliency_maps.get_saliency_maps_for_neuron_activation(
                model_object=model_object,
                layer_name=layer_name,
                neuron_indices=neuron_indices,
                list_of_input_matrices=list_of_input_matrices,
                ideal_activation=ideal_activation))

    else:
        print('Computing saliency maps for channel {0:d} in layer "{1:s}"...'
              ).format(channel_index, layer_name)

        list_of_saliency_matrices = (
            saliency_maps.get_saliency_maps_for_channel_activation(
                model_object=model_object,
                layer_name=layer_name,
                channel_index=channel_index,
                list_of_input_matrices=list_of_input_matrices,
                stat_function_for_neuron_activations=K.max,
                ideal_activation=ideal_activation))

    print 'Denormalizing model inputs...'
    list_of_input_matrices = model_interpretation.denormalize_data(
        list_of_input_matrices=list_of_input_matrices,
        model_metadata_dict=model_metadata_dict)

    print 'Writing saliency maps to file: "{0:s}"...'.format(output_file_name)

    saliency_metadata_dict = saliency_maps.check_metadata(
        component_type_string=component_type_string,
        target_class=target_class,
        layer_name=layer_name,
        ideal_activation=ideal_activation,
        neuron_indices=neuron_indices,
        channel_index=channel_index)

    saliency_maps.write_standard_file(
        pickle_file_name=output_file_name,
        list_of_input_matrices=list_of_input_matrices,
        list_of_saliency_matrices=list_of_saliency_matrices,
        storm_ids=storm_ids,
        storm_times_unix_sec=storm_times_unix_sec,
        model_file_name=model_file_name,
        saliency_metadata_dict=saliency_metadata_dict,
        sounding_pressure_matrix_pascals=sounding_pressure_matrix_pascals)