示例#1
0
def main(argv):
  """Implement a simple demo for computing error CDFs."""
  # Input/output flags.
  gflags.DEFINE_string('input_file', None, 'Full path to wing HDF5 log file.')
  gflags.MarkFlagAsRequired('input_file')
  gflags.DEFINE_string('output_file', None, 'Full path to output MAT file.')
  gflags.MarkFlagAsRequired('output_file')

  # Segment processing flags.
  gflags.DEFINE_integer('increment', 100,
                        'Integer number of messages between segments.')
  gflags.DEFINE_integer('seg_length', 1000,
                        'Integer number of messages in each segment.')

  # Evaluate segments over a specific time interval.
  gflags.DEFINE_float('start_time', -float('inf'),
                      'Start time to evaluate segment errors.')
  gflags.DEFINE_float('end_time', float('inf'),
                      'End time to evaluate segment errors.')

  # Override default parameters.
  gflags.DEFINE_list('params', [],
                     'A comma-separated list of param=value tokens, where '
                     'each param describes the dot path to a parameter in '
                     'EstimatorParams.')
  gflags.RegisterValidator('params',
                           lambda l: all(len(s.split('=')) == 2 for s in l),
                           message='Invalid key=value parameter syntax.')

  # Scenarios to process.
  gflags.DEFINE_bool('scenario_pure_inertial', False,
                     'Process pure inertial scenario.')
  gflags.DEFINE_bool('scenario_gps_dropout', False,
                     'Process GPS dropout scenario.')

  # Common faults to introduce.
  gflags.DEFINE_bool('fault_weather', False,
                     'Fault weather subsystems to avoid an assert when '
                     'reprocessing historical data.')
  gflags.DEFINE_bool('fault_glas', False, 'Fault GLAS subsystems.')

  # Specify flight for special handling.
  gflags.DEFINE_string('flight', None,
                       'Fix known issues associated with the given flight.')

  try:
    argv = gflags.FLAGS(argv)
  except gflags.FlagsError, e:
    print '{}\nUsage: {} ARGS\n{}'.format(e, sys.argv[0], gflags.FLAGS)
    sys.exit(1)
示例#2
0
def flags():
    # Debug settings
    gflags.DEFINE_string("branch", None, "")
    gflags.DEFINE_string("sha", None, "")
    gflags.DEFINE_boolean("debug", False, "")

    # Performance settings
    gflags.DEFINE_boolean("cuda", False, "")

    # Display settings
    gflags.DEFINE_string("env", "main", "")
    gflags.DEFINE_string("experiment_name", None, "")

    # Data settings
    gflags.DEFINE_string("descr_train", "./utils/descriptions.csv", "")
    gflags.DEFINE_string("descr_dev", "./utils/descriptions.csv", "")
    gflags.DEFINE_string("train_data", "./utils/imgs/train", "")
    gflags.DEFINE_string("dev_data", "./utils/imgs/dev", "")
    gflags.DEFINE_integer("word_embedding_dim", 100, "")
    gflags.DEFINE_string("word_embedding_path",
                         "~/data/glove/glove.6B.100d.txt", "")

    # Optimization settings
    gflags.DEFINE_enum("optim_type", "RMSprop", ["Adam", "SGD", "RMSprop"], "")
    gflags.DEFINE_integer("batch_size", 32, "Minibatch size for train set.")
    gflags.DEFINE_integer("batch_size_dev", 50, "Minibatch size for dev set.")
    gflags.DEFINE_float("learning_rate", 1e-4, "Used in optimizer.")
    gflags.DEFINE_integer("max_epoch", 500, "")
示例#3
0
def args():

    default_experiment_name = "exp-{}".format(int(time.time()))

    gflags.DEFINE_enum("preset", None, ["demo"], "Easily set configuration.")
    gflags.DEFINE_string("data_path", os.path.expanduser("~/data/multinli_0.9/multinli_0.9_dev_matched.jsonl"), "Path to NLI data.")
    gflags.DEFINE_string("eval_data_path", os.path.expanduser("~/data/multinli_0.9/multinli_0.9_dev_matched.jsonl"), "Path to NLI data.")
    gflags.DEFINE_string("embedding_path", os.path.expanduser("~/data/glove.840B.300d.txt"), "Path to GloVe vectors.")
    gflags.DEFINE_integer("batch_size", 100, "Batch size.")
    gflags.DEFINE_integer("input_dim", 300, "Word embedding dimension.")
    gflags.DEFINE_integer("hidden_dim", 300, "Hidden representation dimension.")
    gflags.DEFINE_string("save_path", ".", "Path to logs and checkpoints.")
    gflags.DEFINE_string("load_path", None, "Path to load checkpoint.")
    gflags.DEFINE_string("log_path", None, "Path to log.")
    gflags.DEFINE_string("experiment_name", default_experiment_name, "Experiment name.")
    gflags.DEFINE_float("l2", None, "Use l2 regularization.")
    gflags.DEFINE_boolean("extract", False, "Use pretrained model to calculate query and target vectors for input data.")
    gflags.DEFINE_integer("seed", 11, "Random seed.")

    FLAGS(sys.argv)

    presets()

    if not FLAGS.load_path:
        FLAGS.load_path = FLAGS.save_path  # this way we use logs/ckpt for an experiment_name if it exists.

    if not FLAGS.log_path:
        FLAGS.log_path = os.path.join('.', FLAGS.experiment_name + '.log')

    logger = MainLogger().init(path=FLAGS.log_path)
    logger.Log(json.dumps(FLAGS.FlagValuesDict(), indent=4, sort_keys=True))
示例#4
0
def get_flags():
    # Debug settings.
    gflags.DEFINE_string("data_dir", "cmu",
                         "dir containing train.txt, test.txt, valid.txt")
    gflags.DEFINE_string("log_path", "logs", "")
    gflags.DEFINE_string("data_type", "discriminator",
                         "figure out how to use this")
    gflags.DEFINE_enum("model_type", "LSTM", ["LSTM", "BiLSTM", "DEEP"],
                       "options: LSTM, BiLSTM, DEEP, ...")
    gflags.DEFINE_string("ckpt_path", "checkpoints", "")
    gflags.DEFINE_boolean("gpu", False, "set to false on local")
    gflags.DEFINE_string("experiment_name", "", "")
    gflags.DEFINE_boolean("evaluate_only", False, "")

    #sizes
    gflags.DEFINE_integer("embedding_size", 29, "hardcoded for simplicity")
    gflags.DEFINE_integer("reduction_size", 40, "hardcoded for simplicity")
    gflags.DEFINE_integer("crop_pad_length", 30, "")

    #chunks
    gflags.DEFINE_integer("stages_per_epoch", 40,
                          "how many eval/stats steps per epoch?")
    gflags.DEFINE_integer("prints_per_stage", 1,
                          "how often to print stats to stdout during epoch")
    gflags.DEFINE_integer("convergence_threshold", 50,
                          "how many eval steps before early stop")
    gflags.DEFINE_integer(
        "max_epochs", 100,
        "number of epochs before stop, essentially unreachable")
    gflags.DEFINE_integer("batch_size", 64, "")

    #tunable parameters
    gflags.DEFINE_integer("hidden_size", 1024, "")
    gflags.DEFINE_integer("num_layers", 1, "")
    gflags.DEFINE_float("learning_rate", .002, "")
示例#5
0
def _set_flags():
    gflags.DEFINE_boolean("predict_hyp", False, "train to predict hypotheses")
    gflags.DEFINE_boolean("infer_hyp", False, "use hypotheses at test time")
    gflags.DEFINE_boolean("infer_by_likelihood", False, "use likelihood (rather than accuracy) to rank hypotheses")
    gflags.DEFINE_boolean("use_true_hyp", False, "predict using ground-truth description")
    gflags.DEFINE_integer("n_sample_hyps", 5, "number of hypotheses to sample")
    gflags.DEFINE_float("learning_rate", 0.001, "learning rate")
    gflags.DEFINE_string("restore", None, "model to restore")
    gflags.DEFINE_boolean("use_true_eval", False, "score with true evaluation function")
    gflags.DEFINE_boolean("use_task_hyp", False, "task as hypothesis")
示例#6
0
文件: rl_models.py 项目: lim0606/l3
def _set_flags():
    gflags.DEFINE_boolean("predict_hyp", False, "train to predict hypotheses")
    gflags.DEFINE_boolean("infer_hyp", False, "use hypotheses at test time")
    gflags.DEFINE_string("restore", None, "model to restore")
    gflags.DEFINE_float("concept_prior", None,
                        "place a normal prior on concept representations")
    gflags.DEFINE_integer(
        "adapt_reprs", 100,
        "number of representations to sample when doing adaptation")
    gflags.DEFINE_integer(
        "adapt_samples", 1000,
        "number of episodes to spend evaluating sampled representations")
 def __init__(self, name, flag_values):
     super(SetTargetPoolBackup, self).__init__(name, flag_values)
     flags.DEFINE_float(
         'failover_ratio',
         None, '--failover_ratio and --backup_pool must either be '
         'both set or not set. If not set, existing failover '
         'ratio will be removed from the target pool, which will '
         'disable the fallback behavior of the primary target '
         'pool. If set, the failover ratio of the primary target '
         'pool will be replaced by this value.',
         flag_values=flag_values)
     flags.DEFINE_string(
         'backup_pool',
         None, '--backup_pool and --failover_ratio must either be '
         'both set or not set. If not set, existing backup '
         'pool will be removed from the target pool, which will '
         'disable the fallback behavior of the primary target '
         'pool. If set, the backup pool of the primary target '
         'pool will be replaced by this value.',
         flag_values=flag_values)
示例#8
0
def load_defaults():
    ### Experiment Parameters
    gflags.DEFINE_integer(
        'num_experiments', 1,
        'the number of times to train the model (with different initialization)'
    )
    gflags.DEFINE_integer(
        'seed', 1, 'a random seed used in all randomized model initialization')

    ### Data Parameters
    gflags.DEFINE_string('train_data', 'data/NTC_1.5/processed/train.utf8',
                         'the path to the train data file')
    gflags.DEFINE_string('test_data', 'data/NTC_1.5/processed/test.utf8',
                         'the path to the test data file')
    gflags.DEFINE_string('dev_data', 'data/NTC_1.5/processed/dev.utf8',
                         'the path to the dev data file')
    gflags.DEFINE_integer(
        'max_train_instances', 100000,
        'max number of instances to read for each train/test/dev set')

    ### Model Parameters
    ## Representation
    gflags.DEFINE_boolean(
        'use_context', True,
        'construct the representation from LSTM context embeddings')
    gflags.DEFINE_boolean(
        'use_sp', True,
        'construct the representation directly from pred/arg embeddings')
    gflags.DEFINE_integer('context_dims', 20,
                          'output dimension for LSTM context embeddings')
    gflags.DEFINE_integer(
        'sp_dims', 8,
        'dimensionality of arg embedding for selectional preference')
    gflags.DEFINE_integer('num_context_layers', 2,
                          'number of layers in the context LSTM')
    gflags.DEFINE_float(
        'context_dropout', 0.0,
        'amount of dropout on each LSTM layer in the context representation')
示例#9
0
                            """Provide row of input image.""")
gflags.DEFINE_integer('input_col', 448,
                            """Provide col of input image.""")
gflags.DEFINE_integer('output_row', 14,
                            """Provide row of output shape.""")
gflags.DEFINE_integer('output_col', 14,
                            """Provide col of output shape.""")
gflags.DEFINE_integer('num_class', 20,
                            """Number of class of dataset.""")
gflags.DEFINE_string('eval_dir', 'result',
                           """Directory where to write result files..""")
gflags.DEFINE_string('checkpoint_path', 'backup/model.ckpt-50000',
                           """Model file after training.""")
gflags.DEFINE_string('gpu_list', '1',
                           """GPU list, such as '0, 1, ....'.""")
gflags.DEFINE_float('gpu_usage', 0.8,
                          """Per process gpu memory fraction.""")


CLASSES = []
                          
COLORS = [(0, 255, 0), (0, 0, 255), (241, 90, 36), 
(235, 0, 139), (0, 159, 255), (223, 255, 0), 
(237, 34, 42), (180, 58, 228), (247, 147, 30), (2, 254, 207)]

COUNT = -1


def save_result(im_id, im_sz, boxes_list, eval_dir):

    global COUNT
    COUNT += 1
示例#10
0
def get_flags():
    gflags.DEFINE_enum("model_type", "transup", ["transup", "bprmf", "fm",
                                                "transe", "transh", "transr", "transd",
                                                "cfkg", "cke", "cofm", "jtransup"], "")
    gflags.DEFINE_enum("dataset", "ml1m", ['kktix', "ml1m", "dbbook2014", "amazon-book", "last-fm", "yelp2018"], "including ratings.csv, r2kg.tsv and a kg dictionary containing kg_hop[0-9].dat")
    gflags.DEFINE_bool(
        "filter_wrong_corrupted",
        True,
        "If set to True, filter test samples from train and validations.")
    gflags.DEFINE_bool("share_embeddings", False, "")
    gflags.DEFINE_bool("use_st_gumbel", False, "")
    gflags.DEFINE_integer("max_queue", 10, ".")
    gflags.DEFINE_integer("num_processes", 40, ".")

    gflags.DEFINE_float("learning_rate", 0.001, "Used in optimizer.")
    gflags.DEFINE_float("norm_lambda", 1.0, "decay of joint model.")
    gflags.DEFINE_float("kg_lambda", 1.0, "decay of kg model.")
    gflags.DEFINE_integer(
        "early_stopping_steps_to_wait",
        70000,
        "How many times will lr decrease? If set to 0, it remains constant.")
    gflags.DEFINE_bool(
        "L1_flag",
        False,
        "If set to True, use L1 distance as dissimilarity; else, use L2.")
    gflags.DEFINE_bool(
        "is_report",
        False,
        "If set to True, use L1 distance as dissimilarity; else, use L2.")
    gflags.DEFINE_float("l2_lambda", 1e-5, "")
    gflags.DEFINE_integer("embedding_size", 64, ".")
    gflags.DEFINE_integer("negtive_samples", 1, ".")
    gflags.DEFINE_integer("batch_size", 512, "Minibatch size.")
    gflags.DEFINE_enum("optimizer_type", "Adagrad", ["Adam", "SGD", "Adagrad", "Rmsprop"], "")
    gflags.DEFINE_float("learning_rate_decay_when_no_progress", 0.5,
                        "Used in optimizer. Decay the LR by this much every epoch steps if a new best has not been set in the last epoch.")

    gflags.DEFINE_integer(
        "eval_interval_steps",
        14000,
        "Evaluate at this interval in each epoch.")
    gflags.DEFINE_integer(
        "training_steps",
        1400000,
        "Stop training after this point.")
    gflags.DEFINE_float("clipping_max_value", 5.0, "")
    gflags.DEFINE_float("margin", 1.0, "Used in margin loss.")
    gflags.DEFINE_float("momentum", 0.9, "The momentum of the optimizer.")
    gflags.DEFINE_integer("seed", 0, "Fix the random seed. Except for 0, which means no setting of random seed.")
    gflags.DEFINE_integer("topn", 10, "")
    gflags.DEFINE_integer("num_preferences", 4, "")
    gflags.DEFINE_float("joint_ratio", 0.5, "(0 - 1). The train ratio of recommendation, kg is 1 - joint_ratio.")

    gflags.DEFINE_string("experiment_name", None, "")
    gflags.DEFINE_string("data_path", None, "")
    gflags.DEFINE_string("rec_test_files", None, "multiple filenames separated by ':'.")
    gflags.DEFINE_string("kg_test_files", None, "multiple filenames separated by ':'.")
    gflags.DEFINE_string("log_path", None, "")
    gflags.DEFINE_enum("log_level", "debug", ["debug", "info"], "")
    gflags.DEFINE_string(
        "ckpt_path", None, "Where to save/load checkpoints. If not set, the same as log_path")
    
    gflags.DEFINE_string(
        "load_ckpt_file", None, "Where to load pretrained checkpoints under log path. multiple filenames separated by ':'.")

    gflags.DEFINE_boolean(
        "has_visualization",
        True,
        "if set True, use visdom for visualization.")
    gflags.DEFINE_integer("visualization_port", 8097, "")
    # todo: only eval when no train.dat when load data
    gflags.DEFINE_boolean(
        "eval_only_mode",
        False,
        "If set, a checkpoint is loaded and a forward pass is done to get the predicted candidates."
        "Requirements: Must specify load_experiment_name.")
    gflags.DEFINE_string("load_experiment_name", None, "")
示例#11
0
# Random seed
gflags.DEFINE_bool('random_seed', True, 'Random seed')

# Input
gflags.DEFINE_integer('num_img', 45, 'Target Gesture Length')
gflags.DEFINE_integer('img_width', 100, 'Target Image Width')
gflags.DEFINE_integer('img_height', 100, 'Target Image Height')
gflags.DEFINE_string('img_mode', "grayscale", 'Load mode for images, either '
                     'rgb or grayscale')

# Training parameters
gflags.DEFINE_integer('batch_size', 64, 'Batch size in training and evaluation')
gflags.DEFINE_integer('epochs', 15, 'Number of epochs for training')
gflags.DEFINE_integer('initial_epoch', 0, 'Initial epoch to start training')
gflags.DEFINE_float('initial_lr', 1e-4, 'Initial learning rate for adam')

# Files
gflags.DEFINE_string('experiment_rootdir', "./models/test_5", 'Folder '
                     ' containing all the logs, model weights and results')
gflags.DEFINE_string('data_path', "./ProcessedData",
                     'Folder containing the whole dataset')
gflags.DEFINE_string('video_dir', "../video_1", 'Folder containing'
                     ' only one experiment to be processed')
gflags.DEFINE_string('exp_name', "exp_1", 'Name of the experiment'
                     ' to be processed')

# Model
gflags.DEFINE_bool('restore_model', True, 'Whether to restore a trained'
                   ' model for training')
gflags.DEFINE_string('weights_fname', './models/test_3/weights_050.h5',
示例#12
0
import gflags
import logging
import numpy as np

from needle.agents import BasicAgent, register_agent
from needle.agents.TNPG.net import Net
from needle.agents.TRPO.critic import Critic
from needle.helper.conjugate_gradient import conjugate_gradient
from needle.helper.OU_process import OUProcess
from needle.helper.softmax_sampler import SoftmaxSampler
from needle.helper.batcher import Batcher
from needle.helper.utils import decay_cumsum, softmax

gflags.DEFINE_float("GAE_lambda", 0.98, "GAE lambda")
gflags.DEFINE_float("critic_eps", 0.01, "critic's trust region")
gflags.DEFINE_float("line_search_decay", 0.7, "line search's decay factor")
FLAGS = gflags.FLAGS


@register_agent("TRPO")
class Agent(SoftmaxSampler, Batcher, BasicAgent):
    def __init__(self, input_dim, output_dim):
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.counter = 0

        self.net = Net(input_dim, output_dim)
        self.net.build_infer()
        self.net.build_train()

        self.critic = Critic(input_dim)
 def __init__(self, name, flag_values):
     super(AddTargetPool, self).__init__(name, flag_values)
     flags.DEFINE_string('description',
                         '',
                         'An optional Target Pool description',
                         flag_values=flag_values)
     flags.DEFINE_list(
         'health_checks', [],
         'Specifies a HttpHealthCheck resource to use to '
         'determine the health of VMs in this pool. '
         'If no health check is specified, traffic will be '
         'sent to all instances in this target pool as if the '
         'instances were healthy, but the health status of this '
         'pool will appear as unhealthy as a warning that this '
         'target pool does not have a health check.',
         flag_values=flag_values)
     flags.DEFINE_list(
         'instances', [],
         '[Required] Specifies a list of instances that will '
         'receive traffic directed to this target pool. Each '
         'entry must be specified by the instance name '
         '(e.g., \'--instances=myinstance\') or a relative or '
         'fully-qualified path to the instance (e.g., '
         '\'--instances=<zone>/instances/myotherinstance\'). To '
         'specify multiple instances, provide them as '
         'comma-separated entries. All instances in one target '
         'pool must belong to the same region as the target pool. '
         'Instances do not need to exist at the time the target '
         'pool is created and can be created afterwards.',
         flag_values=flag_values)
     gcutil_flags.DEFINE_case_insensitive_enum(
         'session_affinity',
         self.DEFAULT_SESSION_AFFINITY,
         ['NONE', 'CLIENT_IP', 'CLIENT_IP_PROTO'],
         'Specifies the session affinity option for the '
         'connection. Options include:'
         '\n NONE: connections from the same client IP '
         'may go to any VM in the target pool '
         '\n CLIENT_IP: connections from the same client IP '
         'will go to the same VM in the target pool; '
         '\n CLIENT_IP_PROTO: connections from the same '
         'client IP with the same IP protocol will go to the '
         'same VM in the targetpool. ',
         flag_values=flag_values)
     flags.DEFINE_float(
         'failover_ratio',
         None, 'If set, --backup_pool must also be set to point to an '
         'existing target pool in the same region. They together '
         'define the fallback behavior of the target pool '
         '(primary pool) to be created by this command: if the '
         'ratio of the healthy VMs in the primary pool is at '
         'or below this number, traffic arriving at the '
         'load-balanced IP will be directed to the backup pool. '
         'If not set, the traaffic will be directed the VMs in '
         'this pool in the "force" mode, where traffic will be '
         'spread to the healthy VMs with the best effort, or '
         'to all VMs when no VM is healthy.',
         flag_values=flag_values)
     flags.DEFINE_string(
         'backup_pool',
         None, 'Together with --failover_ratio, this flag defines '
         'the fallback behavior of the target pool '
         '(primary pool) to be created by this command: if the '
         'ratio of the healthy VMs in the primary pool is at '
         'or below --failover_ratio, traffic arriving at the '
         'load-balanced IP will be directed to the backup '
         'pool. ',
         flag_values=flag_values)
import gflags
FLAGS = gflags.FLAGS

# Dataset selection parameters
gflags.DEFINE_string('trajectory_name', 'bentDice', 'The name of the trajectory to use from the dataset')
gflags.DEFINE_string('yaw_type', 'yawForward', 'The yaw type to use from the dataset')
gflags.DEFINE_float('max_speed', 2.0, 'The maximum speed of the drone in the dataset')
示例#15
0
import gflags

FLAGS = gflags.FLAGS

# Random seed
gflags.DEFINE_bool('random_seed', True, 'Random seed')

# Input
gflags.DEFINE_integer('target_level', -14, 'Target Level dB')
gflags.DEFINE_float('target_nu', 0.1995262315, 'Target Level nu')
gflags.DEFINE_integer('sr', 44100, 'Sample Rate')
gflags.DEFINE_integer('img_width', 862, 'Target Image Width')
gflags.DEFINE_integer('img_height', 96, 'Target Image Height')
gflags.DEFINE_string('img_mode', "rgb",
                     'Load mode for images, either rgb or grayscale')
gflags.DEFINE_string('h_grid', 50, 'Horizontal size of the grid classifiers')
gflags.DEFINE_string('v_grid', 25, 'Vertical size of the grid classifiers')

# Training parameters
gflags.DEFINE_integer('batch_size', 128,
                      'Batch size in training and evaluation')
gflags.DEFINE_integer('epochs', 100, 'Number of epochs for training')
gflags.DEFINE_integer('verbose', 1, 'Type of verbose for training')
gflags.DEFINE_integer('initial_epoch', 0, 'Initial epoch to start training')
gflags.DEFINE_float('initial_lr', 1e-3, 'Initial learning rate for adam')
gflags.DEFINE_string('f_output', 'softmax', 'Output function')

# Testing parameters
gflags.DEFINE_float('IOU', 0.5, 'Threshold for the IoU')
gflags.DEFINE_float('NMS', 0.3, 'Threshold for the NMS')
gflags.DEFINE_float(
示例#16
0
    'url to which output is posted. The url must include param name, '
    'value for which is populated with task_id from puller while posting '
    'the data. Format of output url is absolute url which handles the'
    'post request from task queue puller.'
    '(Eg: "http://taskpuller.appspot.com/taskdata?name=").'
    'The Param value is always the task_id. The handler for this post'
    'should be able to associate the task with its id and take'
    'appropriate action. Use the appengine_access_token.py tool to'
    'generate the token and store it in a file before you start.')
flags.DEFINE_string(
    'appengine_access_token_file', None,
    'File containing an Appengine Access token, if any. If present this'
    'token is added to the output_url request, so that the output_url can'
    'be an authenticated end-point. Use the appengine_access_token.py tool'
    'to generate the token and store it in a file before you start.')
flags.DEFINE_float('task_timeout_secs', '3600', 'timeout to kill the task')


class ClientTaskInitError(Exception):
    """Raised when initialization of client task fails."""
    def __init__(self, task_id, error_str):
        Exception.__init__(self)
        self.task_id = task_id
        self.error_str = error_str

    def __str__(self):
        return ('Error initializing task "%s". Error details "%s". ' %
                (self.task_id, self.error_str))


class ClientTask(object):
示例#17
0
FLAGS = flags.FLAGS

flags.DEFINE_string("train", "data/joint/shuffle.train.txt",
                    "training data")
flags.DEFINE_string("dev", "data/joint/shuffle.dev.txt", "development data")
flags.DEFINE_string("save", None, "model saving path")
flags.DEFINE_integer("epoch", 30, "number of training epochs")
flags.DEFINE_integer("batch", 1, "Minibatch size")

flags.DEFINE_bool("extlabelfeatures", True,
                  "extend label features to include two children of s0")

# arguments for span-based parser
flags.DEFINE_integer("dynet_mem", 10000,
                     "Memory allocation for Dynet. (DEFAULT=10000)")
flags.DEFINE_float("dynet_l2", 0, "L2 regularization parmeter. (DEFAULT=0)")
flags.DEFINE_integer("dynet_seed", 123, "Seed for PNG (0: generate)")
flags.DEFINE_integer("word_dims", 50,
                     "Embedding dimensions for word forms. (DEFAULT=50)")
flags.DEFINE_integer("tag_dims", 20,
                     "Embedding dimensions of POS tags. (DEFAULT=2-)")
flags.DEFINE_integer("lstm_units", 200,
                     "Number of LSTM units in each layer/direction. "
                     "(DEFAULT=200)")
flags.DEFINE_integer("hidden_units", 200,
                     "Number of hidden units for each FC ReLU layer. "
                     "(DEFAULT=200)")
flags.DEFINE_float("droprate", 0.5, "Drouput probability. (DEFAULT=0.5)")
flags.DEFINE_float("unk_param", 0.8375,
                   "Parameter z for random UNKing. (DEFAULT=0.8375)")
flags.DEFINE_float("alpha", 1.0,
import codecs
import sys
import re

import gflags
FLAGS = gflags.FLAGS
gflags.DEFINE_string("dictfile", None,
                     "dict file with frequencies and reverse-sorted")
gflags.DEFINE_integer("topn", None,
                      "Top N frequency tokens u want to filter the data with")
gflags.DEFINE_float("unkratio", 0.2,
                    "unk token ratio limit for each sentence to filter")

gflags.MarkFlagAsRequired('dictfile')
gflags.MarkFlagAsRequired('topn')

try:
    FLAGS(sys.argv)
except gflags.FlagsError as e:
    print "\n%s" % e
    print FLAGS.GetHelp(include_special_flags=False)
    sys.exit(1)

dictname = FLAGS.dictfile
topn = FLAGS.topn
unkratio = FLAGS.unkratio

dic = {}
count = 0
with codecs.open(dictname) as f:
    for line in f:
import os
import glob
import sys
import gflags
from rmp_nav.simulation import agent_factory
from rmp_nav.common.utils import get_model_dir, get_gibson_asset_dir, get_config_dir, get_data_dir
from topological_nav.controller import inference
from topological_nav.controller.dataset import DatasetSourceTargetPairMultiframeDst
from topological_nav.tools.eval_controller_common import EvaluatorMultiframeDst

gflags.DEFINE_string('env', 'space8', '')
gflags.DEFINE_integer('start_idx', 0, '')
gflags.DEFINE_integer('n_traj', 200, '')
gflags.DEFINE_boolean('visualize', True, '')
gflags.DEFINE_boolean('save_screenshot', False, '')
gflags.DEFINE_float('zoom', 1.0, '')
FLAGS = gflags.FLAGS
FLAGS(sys.argv)

weights_file = os.path.join(
    get_model_dir(),
    'topological_nav/controller/multiframe_dst/gtwp-normwp-farwp-jitter-weightedloss-checkwp-nf6-interval3-dmax3-z0228-model.8'
)

_env_dict = {}


def register(f):
    _env_dict[f.__name__] = f
    return f
示例#20
0
def get_flags():
    # Debug settings.
    gflags.DEFINE_bool(
        "debug",
        False,
        "Set to True to disable debug_mode and type_checking.")
    gflags.DEFINE_bool(
        "show_progress_bar",
        True,
        "Turn this off when running experiments on HPC.")
    gflags.DEFINE_string("git_branch_name", "", "Set automatically.")
    gflags.DEFINE_string("slurm_job_id", "", "Set automatically.")
    gflags.DEFINE_integer(
        "deque_length",
        100,
        "Max trailing examples to use when computing average training statistics.")
    gflags.DEFINE_string("git_sha", "", "Set automatically.")
    gflags.DEFINE_string("experiment_name", "", "")
    gflags.DEFINE_string("load_experiment_name", None, "")

    # Data types.
    gflags.DEFINE_enum("data_type",
                       "bl",
                       ["bl",
                        "sst",
                        "sst-binary",
                        "nli",
                        "arithmetic",
                        "listops",
                        "sign",
                        "eq",
                        "relational"],
                       "Which data handler and classifier to use.")

    # Choose Genre.
    # 'fiction', 'government', 'slate', 'telephone', 'travel'
    # 'facetoface', 'letters', 'nineeleven', 'oup', 'verbatim'
    gflags.DEFINE_string("train_genre", None, "Filter MultiNLI data by genre.")
    gflags.DEFINE_string("eval_genre", None, "Filter MultiNLI data by genre.")

    # Where to store checkpoints
    gflags.DEFINE_string(
        "log_path",
        "./logs",
        "A directory in which to write logs.")
    gflags.DEFINE_string(
        "load_log_path",
        None,
        "A directory from which to read logs.")
    gflags.DEFINE_boolean(
        "write_proto_to_log",
        False,
        "Write logs in a protocol buffer format.")
    gflags.DEFINE_string(
        "ckpt_path", None, "Where to save/load checkpoints. Can be either "
        "a filename or a directory. In the latter case, the experiment name serves as the "
        "base for the filename.")
    gflags.DEFINE_integer(
        "ckpt_step",
        1000,
        "Steps to run before considering saving checkpoint.")
    gflags.DEFINE_boolean(
        "load_best",
        False,
        "If True, attempt to load 'best' checkpoint.")

    # Data settings.
    gflags.DEFINE_string("training_data_path", None, "")
    gflags.DEFINE_string(
        "eval_data_path", None, "Can contain multiple file paths, separated "
        "using ':' tokens. The first file should be the dev set, and is used for determining "
        "when to save the early stopping 'best' checkpoints.")
    gflags.DEFINE_integer("seq_length", 200, "")
    gflags.DEFINE_boolean(
        "allow_cropping",
        False,
        "Trim overly long training examples to fit. If not set, skip them.")
    gflags.DEFINE_integer("eval_seq_length", None, "")
    gflags.DEFINE_boolean(
        "allow_eval_cropping",
        False,
        "Trim overly long evaluation examples to fit. If not set, crash on overly long examples.")
    gflags.DEFINE_boolean(
        "smart_batching",
        True,
        "Organize batches using sequence length.")
    gflags.DEFINE_boolean("use_peano", True, "A mind-blowing sorting key.")
    gflags.DEFINE_integer(
        "eval_data_limit",
        None,
        "Truncate evaluation set to this many batches. -1 indicates no truncation.")
    gflags.DEFINE_boolean(
        "bucket_eval",
        True,
        "Bucket evaluation data for speed improvement.")
    gflags.DEFINE_boolean("shuffle_eval", False, "Shuffle evaluation data.")
    gflags.DEFINE_integer(
        "shuffle_eval_seed",
        123,
        "Seed shuffling of eval data.")
    gflags.DEFINE_string("embedding_data_path", None,
                         "If set, load GloVe-formatted embeddings from here.")
    gflags.DEFINE_boolean("fine_tune_loaded_embeddings", False,
                          "If set, backpropagate into embeddings even when initializing from pretrained.")

    # Model architecture settings.
    gflags.DEFINE_enum(
        "model_type", "RNN", [

            "CBOW", "RNN", "SPINN", "RLSPINN", "ChoiPyramid", "Maillard", "LMS"], "")
    gflags.DEFINE_integer("gpu", -1, "")
    gflags.DEFINE_integer("model_dim", 8, "")
    gflags.DEFINE_integer("word_embedding_dim", 8, "")
    gflags.DEFINE_boolean("lowercase", False, "When True, ignore case.")
    gflags.DEFINE_boolean("use_internal_parser", False, "Use predicted parse.")
    gflags.DEFINE_boolean(
        "validate_transitions",
        True,
        "Constrain predicted transitions to ones that give a valid parse tree.")
    gflags.DEFINE_float(
        "embedding_keep_rate",
        1.0,
        "Used for dropout on transformed embeddings and in the encoder RNN.")
    gflags.DEFINE_boolean("use_difference_feature", True, "")
    gflags.DEFINE_boolean("use_product_feature", True, "")

    # SPINN tracking LSTM settings.
    gflags.DEFINE_integer(
        "tracking_lstm_hidden_dim",
        None,
        "Set to none to avoid using tracker.")
    gflags.DEFINE_boolean(
        "tracking_ln",
        False,
        "When True, layer normalization is used in tracking.")
    gflags.DEFINE_float(
        "transition_weight",
        None,
        "Set to none to avoid predicting transitions.")
    gflags.DEFINE_boolean("lateral_tracking", True,
                          "Use previous tracker state as input for new state.")
    gflags.DEFINE_boolean(
        "use_tracking_in_composition",
        True,
        "Use tracking lstm output as input for the reduce function.")
    gflags.DEFINE_boolean(
        "composition_ln",
        True,
        "When True, layer normalization is used in TreeLSTM composition.")
    gflags.DEFINE_boolean("predict_use_cell", True,
                          "Use cell output as feature for transition net.")

    # SPINN composition function settings.
    gflags.DEFINE_enum(
        "reduce", "treelstm", [
            "treelstm", "treegru", "tanh", "lms"], "Specify composition function.")

    # ChoiPyramid/ST-Gumbel model settings
    gflags.DEFINE_boolean(
        "pyramid_trainable_temperature",
        None,
        "If set, add a scalar trained temperature parameter.")
    gflags.DEFINE_float("pyramid_temperature_decay_per_10k_steps",
                        0.5, "What it says on the box. Does not impact SparseAdam (for word embedding fine-tuning).")
    gflags.DEFINE_float(
        "pyramid_temperature_cycle_length",
        0.0,
        "For wake-sleep-style experiments. 0.0 disables this feature.")

    # Embedding preprocessing settings.
    gflags.DEFINE_enum("encode",
                       "projection",
                       ["pass",
                        "projection",
                        "gru",
                        "attn"],
                       "Encode embeddings with sequential context.")
    gflags.DEFINE_boolean("encode_reverse", False, "Encode in reverse order.")
    gflags.DEFINE_boolean(
        "encode_bidirectional",
        False,
        "Encode in both directions.")
    gflags.DEFINE_integer(
        "encode_num_layers",
        1,
        "RNN layers in encoding net.")

    # RL settings.
    gflags.DEFINE_float(
        "rl_mu",
        0.1,
        "Use in exponential moving average baseline.")
    gflags.DEFINE_enum("rl_baseline",
                       "ema",
                       ["ema",
                        "pass",
                        "greedy",
                        "value"],
                       "Different configurations to approximate reward function.")
    gflags.DEFINE_enum("rl_reward", "standard", ["standard", "xent"],
                       "Different reward functions to use.")
    gflags.DEFINE_float("rl_weight", 1.0, "Hyperparam for REINFORCE loss.")
    gflags.DEFINE_boolean("rl_whiten", False, "Reduce variance in advantage.")
    gflags.DEFINE_boolean(
        "rl_valid",
        True,
        "Only consider non-validated actions.")
    gflags.DEFINE_float(
        "rl_epsilon",
        1.0,
        "Percent of sampled actions during train time.")
    gflags.DEFINE_float(
        "rl_epsilon_decay",
        50000,
        "Step constant in epsilon delay equation.")
    gflags.DEFINE_float(
        "rl_confidence_interval",
        1000,
        "Penalize probabilities of transitions.")
    gflags.DEFINE_float(
        "rl_confidence_penalty",
        None,
        "Penalize probabilities of transitions.")
    gflags.DEFINE_boolean(
        "rl_catalan",
        False,
        "Sample over a uniform distribution of binary trees.")
    gflags.DEFINE_boolean(
        "rl_catalan_backprop",
        False,
        "Sample over a uniform distribution of binary trees.")
    gflags.DEFINE_boolean(
        "rl_wake_sleep",
        False,
        "Inverse relationship between temperature and rl_weight.")
    gflags.DEFINE_boolean(
        "rl_transition_acc_as_reward",
        False,
        "Use the transition accuracy as the reward. For debugging only.")

    # MLP settings.
    gflags.DEFINE_integer(
        "mlp_dim",
        256,
        "Dimension of intermediate MLP layers.")
    gflags.DEFINE_integer("num_mlp_layers", 1, "Number of MLP layers.")
    gflags.DEFINE_boolean(
        "mlp_ln",
        True,
        "When True, layer normalization is used between MLP layers.")
    gflags.DEFINE_float("semantic_classifier_keep_rate", 0.9,
                        "Used for dropout in the semantic task classifier.")

    # Optimization settings.
    gflags.DEFINE_enum("optimizer_type", "SGD", ["Adam", "SGD"], "")
    gflags.DEFINE_integer(
        "training_steps",
        1000000,
        "Stop training after this point.")
    gflags.DEFINE_integer("batch_size", 32, "Minibatch size.")
    gflags.DEFINE_float("learning_rate", 0.5, "Used in optimizer.")  # https://twitter.com/karpathy/status/801621764144971776
    gflags.DEFINE_float("learning_rate_decay_when_no_progress", 0.5,
        "Used in optimizer. Decay the LR by this much every epoch steps if a new best has not been set in the last epoch.")
    gflags.DEFINE_float("clipping_max_value", 5.0, "")
    gflags.DEFINE_float("l2_lambda", 1e-5, "")

    # Display settings.
    gflags.DEFINE_integer(
        "statistics_interval_steps",
        100,
        "Log training set performance statistics at this interval.")
    gflags.DEFINE_integer(
        "eval_interval_steps",
        100,
        "Evaluate at this interval.")
    gflags.DEFINE_integer(
        "sample_interval_steps",
        None,
        "Sample transitions at this interval.")
    gflags.DEFINE_integer("ckpt_interval_steps", 5000,
                          "Update the checkpoint on disk at this interval.")
    gflags.DEFINE_boolean(
        "ckpt_on_best_dev_error",
        True,
        "If error on the first eval set (the dev set) is "
        "at most 0.99 of error at the previous checkpoint, save a special 'best' checkpoint.")
    gflags.DEFINE_integer(
        "early_stopping_steps_to_wait",
        50000,
        "If development set error doesn't improve significantly in this many steps, cease training.")
    gflags.DEFINE_boolean("evalb", False, "Print transition statistics.")
    gflags.DEFINE_integer("num_samples", 0, "Print sampled transitions.")

    # Evaluation settings
    gflags.DEFINE_boolean(
        "expanded_eval_only_mode",
        False,
        "If set, a checkpoint is loaded and a forward pass is done to get the predicted "
        "transitions. The inferred parses are written to the supplied file(s) along with example-"
        "by-example accuracy information. Requirements: Must specify checkpoint path.")  # TODO: Rename.
    gflags.DEFINE_boolean(
        "expanded_eval_only_mode_use_best_checkpoint",
        True,
        "When in expanded_eval_only_mode, load the ckpt_best checkpoint.")
    gflags.DEFINE_boolean("write_eval_report", False, "")
    gflags.DEFINE_boolean(
        "eval_report_use_preds", True, "If False, use the given transitions in the report, "
        "otherwise use predicted transitions. Note that when predicting transitions but not using them, the "
        "reported predictions will look very odd / not valid.")  # TODO: Remove.

    # Maillard Pyramid
    gflags.DEFINE_boolean(
        "cosine",
        False,
        "If true, use cosine similarity instead of dot product in measuring score for compositions.")
    gflags.DEFINE_enum(
        "parent_selection",
        "gumbel",
        ["gumbel",
        "st-gumbel",
        "softmax"],
        "Which function to use to select or calculate the parent.")
    gflags.DEFINE_boolean(
        "right_branching",
        False,
        "Force right-branching composition.")
    gflags.DEFINE_boolean(
        "debug_branching",
        False,
        "use alternative style of right-branching composition.")
    gflags.DEFINE_boolean(
        "uniform_branching",
        False,
        "Uniform distribution instead of gumble softmax weighting during chart parsing.")
    gflags.DEFINE_boolean(
        "random_branching",
        False,
        "Random weighting instead of gumble softmax weighting during chart parsing.")
    gflags.DEFINE_boolean(
        "st_gumbel",
        False,
        "ST-gumble softmax weighting during chart parsing.")
示例#21
0
flags.DEFINE_boolean("naiveavg", False, "naive sum for averaging (slow!)")
flags.DEFINE_string ("train", None, "training corpus")
flags.DEFINE_string ("dev", None, "dev corpus")
flags.DEFINE_string ("out", None, "output file (for weights)")
flags.DEFINE_boolean ("finaldump", False, "dump best weights at the end instead of at each new high")
flags.DEFINE_integer ("multi", 20, "multiprocessing: # of CPUs, -1 to use all CPUs")

##flags.DEFINE_boolean("singletrain", False, "use single thread for training")
##flags.DEFINE_boolean("singledev", False, "use single thread for eval_on_dev")
##flags.DEFINE_boolean("single", True, "--singletrain --singledev")

flags.DEFINE_string("update", "max", "update method: early, noearly, hybrid, late, max")

flags.DEFINE_boolean("shuffle", False, "shuffle training data before each iteration")

flags.DEFINE_float("learning_rate", 1.0, "learning rate")
flags.DEFINE_boolean("allmodels", False, "dumpto separate model files at each best-so-far iteration")

#from mydouble import counts

import gc
import os

class Perceptron(object):

    def __init__(self, decoder):

        Perceptron.learning_rate = FLAGS.learning_rate
        Perceptron.singletrain = FLAGS.multi == 1
        Perceptron.singledev = FLAGS.multi == 1
        
示例#22
0
gflags.DEFINE_integer("update_iterations", None,
                      "Number of iterations to output logging information.")
gflags.DEFINE_integer("iter_per_epoch", None,
                      "Number of iterations per epoch. Leave empty.")
gflags.DEFINE_integer("save_iterations", None,
                      ("Number of iterations to save the network (expensive "
                       "to do this)."))
gflags.DEFINE_integer("total_epochs", 500, "Total number of epochs.")
gflags.DEFINE_boolean("reweight", True, "Try re-weighting.")
gflags.DEFINE_string("frames",
                     "-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10",
                     "Frames to process.")
# gflags.DEFINE_float(
#     "hantman_weight_decay", 0.0001, "Weight decay value.")

gflags.DEFINE_float("learning_rate", 0.001, "Learning rate.")
gflags.DEFINE_integer("hantman_mini_batch", 256,
                      "Mini batch size for training.")
# needed to limit how much to process during eval. important for speed purposes.
gflags.DEFINE_integer("seq_len", 1500, "Sequence length.")

gflags.MarkFlagAsRequired("out_dir")
gflags.MarkFlagAsRequired("train_file")
gflags.MarkFlagAsRequired("test_file")

# gflags.DEFINE_boolean("help", False, "Help")
gflags.ADOPT_module_key_flags(arg_parsing)
gflags.ADOPT_module_key_flags(flags.cuda_flags)

g_label_names = ["lift", "hand", "grab", "supinate", "mouth", "chew"]
示例#23
0
import sys
from collections import deque
import os


if __name__ == '__main__':

    Flags = gflags.FLAGS
    gflags.DEFINE_bool("cuda", True, "use cuda")
    gflags.DEFINE_string("train_path", "/home/data/pin/data/omniglot/images_background", "training folder")
    gflags.DEFINE_string("test_path", "/home/data/pin/data/omniglot/images_evaluation", 'path of testing folder')
    gflags.DEFINE_integer("way", 20, "how much way one-shot learning")
    gflags.DEFINE_string("times", 400, "number of samples to test accuracy")
    gflags.DEFINE_integer("workers", 4, "number of dataLoader workers")
    gflags.DEFINE_integer("batch_size", 128, "number of batch size")
    gflags.DEFINE_float("lr", 0.00006, "learning rate")
    gflags.DEFINE_integer("show_every", 10, "show result after each show_every iter.")
    gflags.DEFINE_integer("save_every", 100, "save model after each save_every iter.")
    gflags.DEFINE_integer("test_every", 100, "test model after each test_every iter.")
    gflags.DEFINE_integer("max_iter", 50000, "number of iterations before stopping")
    gflags.DEFINE_string("model_path", "/home/data/pin/model/siamese", "path to store model")
    gflags.DEFINE_string("gpu_ids", "0,1,2,3", "gpu ids used to train")

    Flags(sys.argv)

    data_transforms = transforms.Compose([
        transforms.RandomAffine(15),
        transforms.ToTensor()
    ])

示例#24
0
# See the License for the specific language governing permissions and
# limitations under the License.
"""A Cisco XR device .

This module implements the base device interface of base_device.py for
CiscoXR devices.
"""

import gflags

import paramiko_device
import push_exceptions as exceptions

FLAGS = gflags.FLAGS

gflags.DEFINE_float('ciscoxr_timeout_response', None,
                    'CiscoXR device response timeout in seconds.')
gflags.DEFINE_float('ciscoxr_timeout_connect', None,
                    'CiscoXR device connect timeout in seconds.')
gflags.DEFINE_float('ciscoxr_timeout_idle', None,
                    'CiscoXR device idle timeout in seconds.')
gflags.DEFINE_float('ciscoxr_timeout_disconnect', None,
                    'CiscoXR device disconnect timeout in seconds.')
gflags.DEFINE_float('ciscoxr_timeout_act_user', None,
                    'CiscoXR device user activation timeout in seconds.')

# pylint: disable=arguments-differ
# 38:CiscoXrDevice._Cmd: Arguments number differs from overridden method.


class CiscoXrDevice(paramiko_device.ParamikoDevice):
    """A base device model suitable for CiscoXR devices.
示例#25
0
import cv2
import cv_bridge
import gflags
import glog
import rosbag
import yaml

# Requried flags.
gflags.DEFINE_string('input_bag', None, 'Input bag path.')

# Optional flags.
gflags.DEFINE_string('output_path', './', 'Output path.')
gflags.DEFINE_string('weather', 'CLEAR', 'Options: CLEAR, SUNNY, RAINY.')
gflags.DEFINE_string('scene', 'CITY', 'Options: CITY, HIGHWAY.')
gflags.DEFINE_string('time_interval', 'DAYTIME', 'Options: DAYTIME, NIGHT.')
gflags.DEFINE_float('extract_rate', 3, 'Rate to extract image, in seconds.')

# Stable flags which rarely change.
# gflags.DEFINE_string('topic', '/apollo/sensor/camera/obstacle/front_6mm','Source topic.')
gflags.DEFINE_string('topic', '/apollo/sensor/camera/traffic/image_short',
                     'Source topic.')
gflags.DEFINE_integer('sensor_id', 436, 'Source sensor ID.')
gflags.DEFINE_string('capture_place', 'Multiple', 'E.g.: Multiple, Sunnyvale.')


def extract_meta_info(bag):
    """Extract information from a bag file, return an info dict."""
    # Extract from bag info.
    info_dict = yaml.load(bag._get_yaml_info())
    meta_info = {
        'car_id': 'MKZ056',
示例#26
0
文件: anishot.py 项目: 4383/anishot
import gflags
import imageio
import numpy

from PIL import Image
from PIL.ImageDraw import Draw

gflags.DEFINE_string('inp', None, 'Input screenshot image')
gflags.DEFINE_string('out', None, 'Output antimated GIF')

gflags.DEFINE_integer('h', 0, 'Window height')
gflags.DEFINE_integer('maxspeed', 200, 'Max speed on scroll px/frame')
gflags.DEFINE_list('stops', [], 'List of stops for scrolling')
gflags.DEFINE_integer('zoom', 0, 'Number of steps on initial zoom in')
gflags.DEFINE_float('zoom_frac', .3, 'Fraction of screenshot to see on zoomout')

gflags.register_validator('inp', os.path.exists, 'Input screenshot required')
gflags.register_validator('h', lambda v: v > 0, 'Window height required')

F = gflags.FLAGS


def add_frame(frames, frame, duration):
    frames.append((prettify(frame), duration))


def prettify(frame):
    off = 5
    h, w = frame.shape[:2]
    pretty = Image.new('RGB', (w + off, h + off), '#ffffff')
import cPickle as pickle
from iceberk import mpi, classifier, mathutil
from iceberk.experimental.meu_logistic_loss import loss_meu_logistic
import numpy as np
import logging
import os, sys
from sklearn.cross_validation import StratifiedKFold
import time
import gflags

########
# Settings
########
FEATDIR = "/tscratch/tmp/jiayq/imagenet-sbow/"
gflags.DEFINE_bool("load", False, "If set, load the data and then stop.")
gflags.DEFINE_float("reg", 0.01, "The reg term")
gflags.DEFINE_integer("minibatch", 100000, "The minibatch size")
gflags.DEFINE_bool("svm", False, "If set, run SVM")
gflags.DEFINE_bool("hier", False, "If set, use hierarchical loss")
FLAGS = gflags.FLAGS
FLAGS(sys.argv)

########
# Main script
########
if mpi.SIZE > 1:
    raise RuntimeError, "This script runs on single machines only."

np.random.seed(42 + mpi.RANK)
mpi.root_log_level(level=logging.DEBUG)
logging.info("Loading data...")
示例#28
0
import sys
sys.path.insert(0, caffe_dir)
import util
import gflags
import numpy as np
import caffe

if not gflags.FLAGS.has_key("model_dir"):
    gflags.DEFINE_string("model_dir", "@model_path", "set model dir")
if not gflags.FLAGS.has_key("feature_layer_names"):
    gflags.DEFINE_string("feature_layer_names", "['@feature_layer_name']",
                         "set feature layer names")
if not gflags.FLAGS.has_key("device_id"):
    gflags.DEFINE_integer("device_id", 0, "set device id")
if not gflags.FLAGS.has_key("ratio"):
    gflags.DEFINE_float("ratio", -1.0, "set image ratio")
if not gflags.FLAGS.has_key("scale"):
    gflags.DEFINE_float("scale", 1.1, "set image scale")
if not gflags.FLAGS.has_key("resize_height"):
    gflags.DEFINE_integer("resize_height", 256, "set image size")
if not gflags.FLAGS.has_key("resize_width"):
    gflags.DEFINE_integer("resize_width", 256, "set image size")
if not gflags.FLAGS.has_key("raw_scale"):
    gflags.DEFINE_float("raw_scale", 255.0, "set raw scale")
if not gflags.FLAGS.has_key("input_scale"):
    gflags.DEFINE_float("input_scale", 1.0, "set input scale")
if not gflags.FLAGS.has_key("gray"):
    gflags.DEFINE_boolean("gray", False, "set gray")
if not gflags.FLAGS.has_key("oversample"):
    gflags.DEFINE_boolean("oversample", False, "set oversample")
示例#29
0
文件: trade.py 项目: aw1n/testeo
#!/usr/bin/python
import os
import sys

import gflags
import pandas as pd
import numpy as np

from market import market
from portfolio import portfolio
from simulations_code import simulate

gflags.DEFINE_multi_int('hour', 24, 'Hours in between market')
gflags.DEFINE_float(
    'min_percentage_change', 0.1,
    "Minimum variation in 'balance' needed to place an order."
    "1 is 100%")
gflags.DEFINE_string('state_csv', None, "path to csv containing a 'state'")
FLAGS = gflags.FLAGS
gflags.RegisterValidator('min_percentage_change', lambda x: x >= 0,
                         'Should be positive or 0')
#gflags.RegisterValidator('state_csv', os.path.isfile)

if __name__ == "__main__":
    try:
        argv = FLAGS(sys.argv)
    except gflags.FlagsError as e:
        print "%s\nUsage: %s ARGS\n%s" % (e, sys.argv[0], FLAGS)
        sys.exit(1)

    print '*' * 80
示例#30
0
# -*- coding:utf-8 -*-

from collections import defaultdict
import create_features as cf
import predict_nn as nn
import gflags
import sys

FLAGS = gflags.FLAGS
gflags.DEFINE_boolean('use_average', False, 'Use averaged perceptoron.' )
gflags.DEFINE_float('use_margin', 0.0, 'Use margin perceptoron.' )
gflags.DEFINE_float('l1_value', 0.0, 'Use L1 regularization.')

def get_label_and_sentence(line):
    parts = line.rstrip().split()
    label = parts.pop(0)
    sentence = " ".join(parts)
    return (label, sentence)

def update_weights(w, phi, y):
    for name, value in phi.items():
        w[name] += value * y
    
def learning(weight):
    for line in iter(sys.stdin.readline, ""):
        label, sent = get_label_and_sentence(line)
        phi = cf.create_features(sent)
        pre_label = po.predict_one(weight, phi)
        if int(pre_label) != int(label):
            update_weights(weight, phi, int(label))