np.savetxt(fnc_corr_outfile, fnc_corr, fmt='%1.5f', delimiter='\t') fnc_corr_z_outfile = os.path.join(datadir, fnc_corr_z_out) np.savetxt(fnc_corr_z_outfile, fnc_corr_z, fmt='%1.5f', delimiter='\t') fnc_lag_outfile = os.path.join(datadir, fnc_lag_out) np.savetxt(fnc_lag_outfile, fnc_lag, fmt='%1.2f', delimiter='\t') ## Run group analysis ####################### exists, resultsdir = gu.make_dir(datadir,'randomise') resultsglob = os.path.join(datadir, 'FNCtb_*.csv') result_files = glob(resultsglob) for fnc_data_file in result_files: fnc_data = np.genfromtxt(fnc_data_file, names=None, dtype=float, delimiter=None) pth, fname, ext = gu.split_filename(fnc_data_file) fnc_img_fname = os.path.join(resultsdir, fname + '.nii.gz') fnc_saveimg = gu.save_img(fnc_data, fnc_img_fname) rand_basename = os.path.join(resultsdir, fname) p_uncorr_list, p_corr_list = ga.randomise(fnc_saveimg, rand_basename, des_file, con_file) uncorr_results = ga.get_results(p_uncorr_list) corr_results = ga.get_results(p_corr_list) fdr_results = {} for i in range(len(uncorr_results.keys())): conname = sorted(uncorr_results.keys())[i] fdr_corr_arr = ga.multi_correct(uncorr_results[conname]) fdr_results[conname] = gu.square_from_combos(fdr_corr_arr, nnodes) outfile = os.path.join(resultsdir,
modeldir = '/home/jagust/rsfmri_ica/GIFT/models/Old' des_file = os.path.join(modeldir, 'Covariate_Old_log_demeaned.mat') con_file = os.path.join(modeldir, 'Covariate_Old_log_demeaned.con') resultsglob = '*mancovan_preproc.csv' ############################################################## ## Run group analysis with randomise #################################### exists, resultsdir = gu.make_dir(basedir,'randomise') result_files = glob(os.path.join(datadir,resultsglob)) for data_file in result_files: data = np.genfromtxt(data_file, names=None, dtype=float, delimiter=',') pth, fname, ext = gu.split_filename(data_file) img_fname = os.path.join(resultsdir, fname + '.nii.gz') saveimg = gu.save_img(data, img_fname) rand_basename = os.path.join(resultsdir, fname) p_uncorr_list, p_corr_list = ga.randomise(saveimg, rand_basename, des_file, con_file) uncorr_results = ga.get_results(p_uncorr_list) corr_results = ga.get_results(p_corr_list) fdr_results = {} for i in range(len(uncorr_results.keys())): conname = sorted(uncorr_results.keys())[i] fdr_corr_arr = ga.multi_correct(uncorr_results[conname]) fdr_results[conname] = gu.square_from_combos(fdr_corr_arr, nnodes) outfile = os.path.join(resultsdir,
# Get correlation and lag matrices mfnc_zcorr = go.get_mfnc_stats(infile) # Save out text files of correlation and lags mfnc_zcorr_outfile = os.path.join(datadir, mfnc_zcorr_out) np.savetxt(mfnc_zcorr_outfile, mfnc_zcorr, fmt='%1.5f', delimiter='\t') ## Run group analysis ####################### exists, resultsdir = gu.make_dir(datadir,'randomise') resultsglob = os.path.join(datadir, 'mfnc_zcorr.csv') result_files = glob(resultsglob) for mfnc_data_file in result_files: mfnc_data = np.genfromtxt(mfnc_data_file, names=None, dtype=float, delimiter=None) pth, fname, ext = gu.split_filename(mfnc_data_file) mfnc_img_fname = os.path.join(resultsdir, fname + '.nii.gz') mfnc_saveimg = gu.save_img(mfnc_data, mfnc_img_fname) rand_basename = os.path.join(resultsdir, fname) p_uncorr_list, p_corr_list = ga.randomise(mfnc_saveimg, rand_basename, des_file, con_file) uncorr_results = ga.get_results(p_uncorr_list) corr_results = ga.get_results(p_corr_list) fdr_results = {} for i in range(len(uncorr_results.keys())): conname = sorted(uncorr_results.keys())[i] fdr_corr_arr = ga.multi_correct(uncorr_results[conname]) fdr_results[conname] = gu.square_from_combos(fdr_corr_arr, nnodes) outfile = os.path.join(resultsdir,
allsub_array[i] = sub_stat outname = '_'.join(['dFNC', measure_name, stat_name]) + '.csv' outfile = os.path.join(datadir, outname) np.savetxt(outfile, allsub_array, fmt='%1.5f', delimiter='\t') ## Run group analysis with randomise #################################### exists, resultsdir = gu.make_dir(datadir,'randomise') resultsglob = os.path.join(datadir, 'dFNC_*.csv') result_files = glob(resultsglob) for dfnc_data_file in result_files: dfnc_data = np.genfromtxt(dfnc_data_file, names=None, dtype=float, delimiter=None) pth, fname, ext = gu.split_filename(dfnc_data_file) dfnc_img_fname = os.path.join(resultsdir, fname + '.nii.gz') dfnc_saveimg = gu.save_img(dfnc_data, dfnc_img_fname) rand_basename = os.path.join(resultsdir, fname) p_uncorr_list, p_corr_list = ga.randomise(dfnc_saveimg, rand_basename, des_file, con_file) uncorr_results = ga.get_results(p_uncorr_list) corr_results = ga.get_results(p_corr_list) fdr_results = {} for i in range(len(uncorr_results.keys())): conname = sorted(uncorr_results.keys())[i] fdr_corr_arr = ga.multi_correct(uncorr_results[conname]) fdr_results[conname] = gu.square_from_combos(fdr_corr_arr, nnodes) outfile = os.path.join(resultsdir,