def run_one_test(nbits, squawk, nbins, pattern): z = [ Defs.gen_random() for _ in range(0, nbits) ] inv = [ Defs.gen_random() for _ in range(0, (2 ** nbits) - nbins) ] if pattern is 0: inv += [ 0 for _ in range(0, nbins) ] elif pattern is 1: inv += [ 1 for _ in range(0, nbins) ] elif pattern is 2: inv += [ (i % 2) for i in range(0, nbins) ] elif pattern is 3: inv += [ ((i + 1) % 2) for i in range(0, nbins) ] else: inv += [ random.randint(0, 1) for _ in range(0, nbins) ] assert len(inv) == (2 ** nbits) fa = FArith() oldrec = fa.new_cat("old") newrec = fa.new_cat("new") nw2rec = fa.new_cat("nw2") nw3rec = fa.new_cat("nw3") oldbeta = LayerComputeBeta(nbits, z, oldrec) oldval = sum(util.mul_vecs(oldbeta.outputs, inv)) % Defs.prime oldrec.did_mul(len(inv)) oldrec.did_add(len(inv)-1) newcomp = VerifierIOMLExt(z, newrec) newval = newcomp.compute(inv) nw2comp = LayerComputeV(nbits, nw2rec) nw2comp.other_factors = [] nw2comp.set_inputs(inv) for zz in z: nw2comp.next_round(zz) nw2val = nw2comp.prevPassValue nw3comp = VerifierIOMLExt(z, nw3rec) nw3val = nw3comp.compute_sqrtbits(inv) assert oldval == newval, "error for inputs (new) %s : %s" % (str(z), str(inv)) assert oldval == nw2val, "error for inputs (nw2) %s : %s" % (str(z), str(inv)) assert oldval == nw3val, "error for inputs (nw3) %s : %s" % (str(z), str(inv)) if squawk: print print "nbits: %d" % nbits print "OLD: %d mul %d add %d sub" % oldrec.get_counts() print "NEW: %d mul %d add %d sub" % newrec.get_counts() print "NW2: %d mul %d add %d sub" % nw2rec.get_counts() print "NW3: %d mul %d add %d sub" % nw3rec.get_counts() return newrec.get_counts()
class LayerProver(object): def __init__(self, prevL, circuit, in0v, in1v, typev, muxv=None): # pylint: disable=protected-access self.prevL = prevL self.circuit = circuit self.nOutBits = util.clog2(len(in0v)) self.roundNum = 0 self.compute_v = [] self.inputs = [] self.output = [] self.z2_save = [] if muxv is None: # fake it muxv = [0] * len(in0v) assert len(in0v) == len(in1v) and len(in0v) == len(muxv) and len( in0v) == len(typev) # h computation subckt self.compute_h = LayerComputeH(self) # beta computation subckt self.compute_beta = LayerComputeBeta(self.circuit.nCopyBits) # z1chi computation subckt # this just takes advantage of the code in LayerComputeBeta # that does the dynamic-programming computation self.compute_z1chi = LayerComputeBeta(self.nOutBits) # v circuits are per-input---we collapse inputs in first nCopyBits rounds for _ in range(0, 2**self.prevL.nOutBits): lcv_tmp = LayerComputeV(self.circuit.nCopyBits) # outputs are collapsed lcv_tmp.expand_outputs = lcv_tmp.multiple_passes = False self.compute_v.append(lcv_tmp) # after finishing the first nCopyBits rounds, we only need one ComputeV circuit, # and everything is now 2nd order, so we only need three eval points, not four self.compute_v_final = LayerComputeV(self.prevL.nOutBits) self.compute_v_final.set_other_factors([util.THIRD_EVAL_POINT]) # pergate computation subckts for "early" rounds self.gates = [] max_muxbit = 0 for (out, (in0, in1, mx, tp)) in enumerate(zip(in0v, in1v, muxv, typev)): assert issubclass(tp, gateprover._GateProver) self.gates.append(tp(True, in0, in1, out, self, mx)) if mx > max_muxbit: max_muxbit = mx muxlen = max_muxbit + 1 self.circuit.muxbits += [0] * (muxlen - len(self.circuit.muxbits)) # set new inputs def set_inputs(self, inputs): assert len( inputs) == self.circuit.nCopies, "Got inputs for the wrong #copies" self.inputs = inputs for inX in range(0, 2**self.prevL.nOutBits): # transpose input matrix inXVals = [inCopy[inX] for inCopy in inputs] self.compute_v[inX].set_inputs(inXVals) # set a new z vector def set_z(self, z1, z2): self.roundNum = 0 self.compute_z1chi.set_inputs(z1) self.compute_beta.set_inputs(z2) self.z2_save = list(z2) # loop over all the gates and make them update their z coeffs for g in self.gates: g.set_z() # compute fj[0], fj[1], fj[-1], and maybe fj[2] def compute_outputs(self): # if we're at the last round, just return h coefficients if self.roundNum == self.circuit.nCopyBits + 2 * self.prevL.nOutBits: self.output = self.compute_h.output return inEarlyRounds = True if self.roundNum >= self.circuit.nCopyBits: inEarlyRounds = False if inEarlyRounds: # go through each copy of the circuit out = [0, 0, 0, 0] for copy in range(0, len(self.compute_beta.outputs), 2): vals = [0, 0, 0, 0] # go through each gate, summing contribution from this copy for g in self.gates: g.compute_outputs(copy) for j in range(0, 4): vals[j] += g.output[j] vals[j] %= Defs.prime vals[0] *= self.compute_beta.outputs[copy] vals[0] %= Defs.prime out[0] += vals[0] out[0] %= Defs.prime vals[1] *= self.compute_beta.outputs[copy + 1] vals[1] %= Defs.prime out[1] += vals[1] out[1] %= Defs.prime # index with [copy >> 1] because expand_outputs is false in compute_beta vals[2] *= self.compute_beta.outputs_fact[0][copy >> 1] vals[2] %= Defs.prime out[2] += vals[2] out[2] %= Defs.prime vals[3] *= self.compute_beta.outputs_fact[1][copy >> 1] vals[3] %= Defs.prime out[3] += vals[3] out[3] %= Defs.prime self.output = util.interpolate_cubic(out) else: # late rounds: only one set of gates over which to sum; # in these rounds we are updating w1 and then w2 out = [0, 0, 0] for g in self.gates: g.compute_outputs() # sum contributions from this gate for j in range(0, 3): out[j] += g.output[j] out[j] %= Defs.prime for j in range(0, 3): out[j] *= self.compute_beta.prevPassValue self.output = util.interpolate_quadratic(out) # do updates upon receiving new random value def next_round(self, val): assert self.roundNum < self.circuit.nCopyBits + 2 * self.prevL.nOutBits inLateRounds = True # do beta and V updates if self.roundNum < self.circuit.nCopyBits: inLateRounds = False self.compute_beta.next_round(val) for cv in self.compute_v: cv.next_round(val) # no gate updates in early rounds: gate circuits don't update state # gotta do some juggling now that we're done with the w3 updates if self.roundNum == self.circuit.nCopyBits - 1: # set up compute_v_final with prevPassValues from the per-input compute_v instances inputs = [cv.prevPassValue for cv in self.compute_v] assert all([elm is not None for elm in inputs]) self.compute_v_final.set_inputs(inputs) # prepare gates for final rounds for g in self.gates: g.set_early(False) g.set_z() # updating w1 or w2, which requires updating compute_v_final and the gates if inLateRounds: self.compute_v_final.next_round(val) for g in self.gates: g.next_round(val) # finally, update the h_vals (needs to be done after compute_v and compute_beta are updated) self.compute_h.next_round(val) self.roundNum += 1