def main(): draw_mode = 1 global lastFrame, planeVAO, planeVBO # Init GLFW glfw.setErrorCallback(error_callback) glfw.init() glfw.windowHint(glfw.CONTEXT_VERSION_MAJOR, 3) glfw.windowHint(glfw.CONTEXT_VERSION_MINOR, 3) glfw.windowHint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE) # glfw.windowHint(glfw.RESIZABLE, gl.FALSE) glfw.windowHint(glfw.OPENGL_FORWARD_COMPAT, 1) window = glfw.createWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL") if window is None: print('could not open window.') glfw.terminate() sys.exit() inputMap = InputMap() window.makeContextCurrent() window.setKeyCallback(inputMap.key_callback) window.setCursorPosCallback(inputMap.mouse_callback) #window.setScrollCallback(inputMap.scroll_callback) window.setInputMode(glfw.CURSOR, glfw.CURSOR_DISABLED) # some versions of glfw cause an opengl error when creating a window, make sure that's ignored. gl.init() err = gl.getError() if err: print("WINDOW OPEN ERROR:", err) # Define the viewport dimensions VP_WIDTH, VP_HEIGHT = window.getFramebufferSize() gl.viewport(0, 0, VP_WIDTH, VP_HEIGHT) # Setup some OpenGL options gl.enable(gl.DEPTH_TEST); #Setup and compile our shaders shaderGeometryPass = Shader(G_BUFFER_VERT, G_BUFFER_FRAG); shaderLightingPass = Shader(DEFERRED_SHADING_VERT, DEFERRED_SHADING_FRAG); shaderLightBox = Shader(DEFERRED_LIGHT_BOX_VERT, DEFERRED_LIGHT_BOX_FRAG); gPosition, gNormal, gAlbedoSpec = gl.genTextures(3) shaderLightingPass.use() shaderLightingPass.uniforms.gPosition = gNormal shaderLightingPass.uniforms.gNormal = gPosition shaderLightingPass.uniforms.gAlbedoSpec = gAlbedoSpec # "learningopengl/resources/objects/cyborg/cyborg.obj" cyborg = Model("learningopengl/resources/objects/cyborg/cyborg.obj") objectPositions = [ Vec3(-3.0, -3.0, -3.0), Vec3( 0.0, -3.0, -3.0), Vec3( 3.0, -3.0, -3.0), Vec3(-3.0, -3.0, 0.0), Vec3( 0.0, -3.0, 0.0), Vec3( 3.0, -3.0, 0.0), Vec3(-3.0, -3.0, 3.0), Vec3( 0.0, -3.0, 3.0), Vec3( 3.0, -3.0, 3.0) ] NR_LIGHTS = 32 lightPositions = (Vec3 * NR_LIGHTS)() lightColors = (Vec3 * NR_LIGHTS)() for i in range(NR_LIGHTS): lightPositions[i].x = random.uniform(-3.0, 3.0) lightPositions[i].y = random.uniform(-4.0, 2.0) lightPositions[i].z = random.uniform(-3.0, 3.0) lightColors[i].x = random.uniform(0.5, 1.0) lightColors[i].y = random.uniform(0.5, 1.0) lightColors[i].z = random.uniform(0.5, 1.0) # set up the G-buffer # 3 textures: p # 1. Positions (RGB) # 2. Color (RGB) + Specular (A) # 3. Normal (RGB) gBuffer = gl.genFramebuffers(1)[0] gl.bindFramebuffer(gl.FRAMEBUFFER, gBuffer) # set up the position buffer gl.bindTexture(gl.TEXTURE_2D, gPosition) gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, VP_WIDTH, VP_HEIGHT, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, gPosition, 0) # set up the normal buffer gl.bindTexture(gl.TEXTURE_2D, gNormal); gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB, VP_WIDTH, VP_HEIGHT, 0, gl.RGB, gl.FLOAT,None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST) gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT1, gl.TEXTURE_2D, gNormal, 0) # set up the color + specular buffer gl.bindTexture(gl.TEXTURE_2D, gAlbedoSpec); gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, VP_WIDTH, VP_HEIGHT, 0, gl.RGBA, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT2, gl.TEXTURE_2D, gAlbedoSpec, 0) # - Tell OpenGL which color attachments we'll use (of this framebuffer) for rendering attachments = [gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1, gl.COLOR_ATTACHMENT2] gl.drawBuffers(attachments) # - Create and attach depth buffer (renderbuffer) rboDepth = gl.genRenderbuffers(1)[0] gl.bindRenderbuffer(gl.RENDERBUFFER, rboDepth) gl.renderbufferStorage(gl.RENDERBUFFER,gl.DEPTH_COMPONENT, VP_WIDTH, VP_HEIGHT); gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, rboDepth) # - Finally check if framebuffer is complete if gl.checkFramebufferStatus(gl.FRAMEBUFFER) != gl.FRAMEBUFFER_COMPLETE: print("Framebuffer not complete!") gl.bindFramebuffer(gl.FRAMEBUFFER, 0) gl.clearColor(0.0, 0.0, 0.0, 0.0) # Game loop while not window.shouldClose(): # Set frame time currentFrame = time.perf_counter() deltaTime = currentFrame - lastFrame; lastFrame = currentFrame; # Check and call events inputMap.begin_frame() glfw.pollEvents() input = inputMap.get_input() camera.processInput(input, 1.0/30.0) gl.bindFramebuffer(gl.FRAMEBUFFER, gBuffer) gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT) # TODO: use camera.zoom # 1. Geometry Pass: render scene's geometry/color data into gbuffer projection = Mat4.Perspective(45.0, float(SCR_WIDTH)/float(SCR_HEIGHT), 0.1, 100.0) view = camera.getViewMatrix() model = Mat4.Identity() shaderGeometryPass.use() shaderGeometryPass.uniforms.projection = projection shaderGeometryPass.uniforms.view = view for objectPosition in objectPositions: model = Mat4.Translation(objectPosition) * Mat4.Scale(0.25) shaderGeometryPass.uniforms.model = model cyborg.draw(shaderGeometryPass) gl.bindFramebuffer(gl.FRAMEBUFFER, 0) gl.polygonMode(gl.FRONT_AND_BACK, gl.FILL) # 2. Lighting Pass: calculate lighting by iterating over a screen filled quad pixel-by-pixel using the gbuffer's content. gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); shaderLightingPass.use() shaderLightingPass.uniforms.gPosition = gPosition shaderLightingPass.uniforms.gNormal = gNormal shaderLightingPass.uniforms.gAlbedoSpec = gAlbedoSpec # Also send light relevant uniforms for i, lightPosition in enumerate(lightPositions): shaderLightingPass.uniforms.lights[i].Position = lightPosition shaderLightingPass.uniforms.lights[i].Color = lightColors[i] # Update attenuation parameters and calculate radius constant = 1.0 linear = shaderLightingPass.uniforms.lights[i].Linear = 0.7 quadratic = shaderLightingPass.uniforms.lights[i].Quadratic = 1.8 # Then calculate radius of light volume/sphere lightThreshold = 5.0 # 5 / 256 maxBrightness = max(max(lightColors[i].r, lightColors[i].g), lightColors[i].b) radius = (-linear + math.sqrt(linear * linear - 4 * quadratic * (constant - (256.0 / lightThreshold) * maxBrightness))) / (2 * quadratic) shaderLightingPass.uniforms.lights[i].Radius = radius shaderLightingPass.uniforms.viewPos = camera.position if window.getKey(glfw.KEY_1): draw_mode = 1 if window.getKey(glfw.KEY_2): draw_mode = 2 if window.getKey(glfw.KEY_3): draw_mode = 3 if window.getKey(glfw.KEY_4): draw_mode = 4 if window.getKey(glfw.KEY_5): draw_mode = 5 # print("SETTING DRAW MODE:", draw_mode) try: shaderLightingPass.uniforms.draw_mode = draw_mode except: pass RenderQuad() # 2.5. Copy content of geometry's depth buffer to default framebuffer's depth buffer gl.bindFramebuffer(gl.READ_FRAMEBUFFER, gBuffer); gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, 0); # Write to default framebuffer gl.blitFramebuffer(0, 0, VP_WIDTH, VP_HEIGHT, 0, 0, VP_WIDTH, VP_HEIGHT, gl.DEPTH_BUFFER_BIT, gl.NEAREST); gl.bindFramebuffer(gl.FRAMEBUFFER, 0); # 3. Render lights on top of scene, by blitting shaderLightBox.use() shaderLightBox.uniforms.projection = projection # glUniformMatrix4fv(glGetUniformLocation(shaderLightBox.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection)); shaderLightBox.uniforms.view = view # glUniformMatrix4fv(glGetUniformLocation(shaderLightBox.Program, "view"), 1, GL_FALSE, glm::value_ptr(view)); for i, lightPosition in enumerate(lightPositions): model = Mat4.Translation(lightPosition) * Mat4.Scale(0.25) shaderLightBox.uniforms.model = model shaderLightBox.uniforms.lightColor = lightColors[i] RenderCube() # Swap the buffers window.swapBuffers() return 0
def main(): glfw.setErrorCallback(error_callback) glfw.init() glfw.windowHint(glfw.CONTEXT_VERSION_MAJOR, 3) glfw.windowHint(glfw.CONTEXT_VERSION_MINOR, 3) glfw.windowHint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE) # glfw.windowHint(glfw.RESIZABLE, gl.FALSE) glfw.windowHint(glfw.OPENGL_FORWARD_COMPAT, 1) if ENABLE_MULTISAMPLE: glfw.windowHint(glfw.SAMPLES, 4) window = glfw.createWindow(WIDTH, HEIGHT, "LearnOpenGL") if window is None: print('could not open window.') glfw.terminate() sys.exit() window.makeContextCurrent() # window.setInputMode(glfw.CURSOR, glfw.CURSOR_DISABLED) window.setKeyCallback(key_callback) gl.init() err = gl.getError() if err: print("WINDOW OPEN ERROR:", err) framebuffer_width, framebuffer_height = window.getFramebufferSize() # Framebuffers framebuffer = gl.genFramebuffers(1)[0] gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer); # Create a color attachment texture textureColorbuffer = generateAttachmentTexture(gl.RGB, framebuffer_width, framebuffer_height); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, textureColorbuffer, 0) # set up the position buffer gPosition = gl.genTextures(1)[0] gl.bindTexture(gl.TEXTURE_2D, gPosition) gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, framebuffer_width, framebuffer_height, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT1, gl.TEXTURE_2D, gPosition, 0) # set up the normal buffer gNormal = gl.genTextures(1)[0] gl.bindTexture(gl.TEXTURE_2D, gNormal) gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, framebuffer_width, framebuffer_height, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT2, gl.TEXTURE_2D, gNormal, 0) gLight = gl.genTextures(1)[0] gl.bindTexture(gl.TEXTURE_2D, gLight) gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, framebuffer_width, framebuffer_height, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT3, gl.TEXTURE_2D, gLight, 0) # - Tell OpenGL which color attachments we'll use (of this framebuffer) for rendering attachments = [gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1, gl.COLOR_ATTACHMENT2] gl.drawBuffers(attachments) gDepth = gl.genTextures(1)[0] gl.bindTexture(gl.TEXTURE_2D, gDepth) gl.texImage2D(gl.TEXTURE_2D, 0, gl.DEPTH24_STENCIL8, framebuffer_width, framebuffer_height, 0, gl.DEPTH_STENCIL, gl.UNSIGNED_INT_24_8, None) # gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, framebuffer_width, framebuffer_height, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.TEXTURE_2D, gDepth, 0) # Create a renderbuffer object for depth and stencil attachment (we won't be sampling these) # rbo = gl.genRenderbuffers(1)[0] # gl.bindRenderbuffer(gl.RENDERBUFFER, rbo) # gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH24_STENCIL8, framebuffer_width, framebuffer_height); # Use a single renderbuffer object for both a depth AND stencil buffer. # gl.bindRenderbuffer(gl.RENDERBUFFER, 0); # gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.RENDERBUFFER, rbo) # Now actually attach it # Now that we actually created the framebuffer and added all attachments we want to check if it is actually complete now if gl.checkFramebufferStatus(gl.FRAMEBUFFER) != gl.FRAMEBUFFER_COMPLETE: print("ERROR::FRAMEBUFFER:: Framebuffer is not complete!") gl.bindFramebuffer(gl.FRAMEBUFFER, 0) deferred_textures = { 'screenTexture': textureColorbuffer, 'normalTexture': gNormal, 'positionTexture': gPosition, 'lightTexture': gLight, 'depthTexture': gDepth } scene = Scene() camera = Camera(scene=scene) quad_scene = Scene() quad_camera = Camera(scene=quad_scene) light_scene = Scene() light_camera = Camera(scene=light_scene, clear=0) light_camera.clear = gl.COLOR_BUFFER_BIT light_camera.clear_color = (0.0, 0.0, 0.0, 0.0) light_camera.projection_matrix = camera.projection_matrix = Mat4.Perspective(45.0, framebuffer_width/framebuffer_height, 0.1, 100.0) light_camera.view_matrix = camera.view_matrix = Mat4.LookAt(Vec3(math.cos(time.clock()), 1.0, math.sin(time.clock())) *15.0, Vec3(0.0, 0.0, 0.0), Vec3(0.0, 1.0, 0.0)) # light volume model light_volume_data = objloader.load_obj(os.path.join("springtangent-model-files", "lightsphere", "lightsphere.obj"), calculate_normals=True) light_volume_model = Model.FromJSON(light_volume_data, PointLightInstanceData, PlateInstance) # other models armored_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "armored_plate.75.75.decimation_test7.obj"), calculate_normals=True) armored_plate_model = Model.FromJSON(armored_plate_data, InstanceData, PlateInstance) plane_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "plane_plate.75.75.decimation_test.00.obj"), calculate_normals=True) plane_plate_model = Model.FromJSON(plane_plate_data, InstanceData, PlateInstance) angled_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "angled_plate_plane.75.25..25.decimated.obj"), calculate_normals=True) angled_plate_model = Model.FromJSON(angled_plate_data, InstanceData, PlateInstance) angled_to_rounded_data = objloader.load_obj(os.path.join("springtangent-model-files", "angled_to_round_adapter.75.25.25", "angled_to_rounded_adapter.75.25.25.decimated.obj"), calculate_normals=True) angled_to_rounded_model = Model.FromJSON(angled_to_rounded_data, InstanceData, PlateInstance) models = [armored_plate_model, plane_plate_model, angled_plate_model, angled_to_rounded_model] deferred_shader = ShaderProgram(GBUFFER_VERT, GBUFFER_FRAG) deferred_light_shader = ShaderProgram(GBUFFER_LIGHT_VERT, GBUFFER_LIGHT_FRAG) for mesh in light_volume_model.meshes: mesh.shader = deferred_light_shader mesh.material = deferred_textures # replace the shader with the deferred shader in all meshes for model in models: for mesh in model.meshes: mesh.shader = deferred_shader # set up the data for the instances. # 30 x 30 array of tiles, which are randomly selected among the above models n = 30 instances = {} for i in range(n): for j in range(n): r = random.choice(range(4)) transform = Mat4.Translation(Vec3((i-n//2) * 2, 0.0, (j-n//2) * 2)) * Mat4.Rotation(math.pi/2.0 * r, Vec3(0.0, 1.0, 0.0)) instance = scene.add(random.choice(models), InstanceData(transform)) instance.r = r instances[i,j] = instance nlights = 400 for i in range(nlights): transform = Mat4.Translation(Vec3(random.uniform(-n/2, n/2), random.uniform(-1.0, 1.0), random.uniform(-n/2,n/2))) * Mat4.Scale(random.uniform(2.0, 10.0)) instance = light_scene.add(light_volume_model, PointLightInstanceData(transform, diffuse=Vec3(1.0, 1.0, 1.0), linear_attenuation=0.1, quadratic_attenutation=0.01)) # full screen rectangle class QuadVert(Structure): _fields_ = [ ('position', Vec2), ('texcoord', Vec2) ] quad_points = Vector(QuadVert) quad_points.append(QuadVert(Vec2(-1.0, 1.0), Vec2(0.0, 1.0))) quad_points.append(QuadVert(Vec2(-1.0, -1.0), Vec2(0.0, 0.0))) quad_points.append(QuadVert(Vec2( 1.0, -1.0), Vec2(1.0, 0.0))) quad_points.append(QuadVert(Vec2( 1.0, 1.0), Vec2(1.0, 1.0))) quad_indices = Vector(c_ubyte) quad_indices.append(0) quad_indices.append(1) quad_indices.append(2) quad_indices.append(0) quad_indices.append(2) quad_indices.append(3) quad_attribs = BufferAttribs(sizeof(QuadVert)) quad_attribs.add(BufferAttribs.POSITION_INDEX, 2, gl.FLOAT, gl.FALSE, QuadVert.position.offset) quad_attribs.add(BufferAttribs.TEXCOORD_INDEX, 2, gl.FLOAT, gl.FALSE, QuadVert.texcoord.offset) quad_shader = ShaderProgram(FRAMEBUFFER_VERT, FRAMEBUFFER_FRAG) quad_draw_call = DrawCall(gl.UNSIGNED_BYTE, gl.TRIANGLES, 0, len(quad_indices)) quad_material = deferred_textures quad_mesh = Mesh(quad_shader, quad_draw_call, quad_material) quad_model = Model(quad_indices.get_data(), quad_points.get_data(), quad_attribs, [quad_mesh], InstanceData, PlateInstance) # quad_instances = ModelInstances(quad_model) quad_instance = quad_scene.add(quad_model, InstanceData(Mat4.Identity())) gl.enable(gl.MULTISAMPLE) t0 = time.perf_counter() frames = 0 while not window.shouldClose(): glfw.pollEvents() t = time.perf_counter() # render scene to gbuffer gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer) gl.enable(gl.DEPTH_TEST) gl.depthFunc(gl.LEQUAL) gl.enable(gl.CULL_FACE) gl.cullFace(gl.BACK) # set up gbuffer for writing attachments = [gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1, gl.COLOR_ATTACHMENT2] gl.drawBuffers(attachments) framebuffer_width, framebuffer_height = window.getFramebufferSize() light_camera.view_matrix = camera.view_matrix = Mat4.LookAt(Vec3(math.cos(time.clock() * 0.1), 1.0, math.sin(time.clock() * 0.1)) *15.0, Vec3(0.0, 0.0, 0.0), Vec3(0.0, 1.0, 0.0)) viewport = (0, 0, framebuffer_width, framebuffer_height) camera.render_to_viewport(viewport) # render lights to gbuffer gl.drawBuffer(gl.COLOR_ATTACHMENT3) gl.depthFunc(gl.GREATER) gl.enable(gl.CULL_FACE) gl.cullFace(gl.FRONT) gl.enable(gl.BLEND) gl.blendEquation(gl.FUNC_ADD) gl.blendFunc(gl.ONE, gl.ONE) light_camera.render_to_viewport(viewport) err = gl.getError() if err: print("ERROR:", err) if TEST_ANIMATION: for i in range(n): for j in range(n): instance = instances[i,j] enabled = True # math.sin(i+j+t*10.0) > -0.8 # instance.set_enabled(enabled) if enabled: y = (math.sin(t+i) + math.cos(t+j)) * 0.25 transform = Mat4.Translation(Vec3((i-n//2) * 2, y, (j-n//2) * 2)) * Mat4.Rotation(math.pi/2.0 * instance.r, Vec3(0.0, 1.0, 0.0)) instance.model_matrix = transform # render quad with texture gl.bindFramebuffer(gl.FRAMEBUFFER, 0) gl.disable(gl.BLEND) gl.disable(gl.CULL_FACE) gl.disable(gl.DEPTH_TEST) # We don't care about depth information when rendering a single quad quad_camera.clear_color = (1.0, 1.0, 1.0, 1.0) quad_camera.clear = gl.COLOR_BUFFER_BIT quad_camera.render_to_viewport(viewport) scene.update_instances() quad_scene.update_instances() light_scene.update_instances() window.swapBuffers() frames += 1 if not frames % 100: print("FRAME RATE:", float(frames)/(time.perf_counter() - t0))