from global_segmentation import ( read_pgm, ) GT = read_pgm(f'Data\\Ground Truth\\TEST_55.pgm') IM = read_pgm(f'Data\\Brain Volume\\TEST_55.pgm') Y = 217 # height X = 181 # col intensity = {} for k in range(Y): for l in range(X): if GT[k][l] not in intensity: intensity[GT[k][l]] = [IM[k][l]] else: intensity[GT[k][l]].append(IM[k][l]) for ele in intensity: print(ele, " ", sum(intensity[ele]) / len(intensity[ele]))
N_IT = 100 C = [13,45,100,115] # Values of the initial Clusters A = 0.7 # Value of alpha N = len(C) P = 1 Q = 3 M = 2.5 E = 0.01 p = (1/(M-1)) img_vol = [] ground_truth = [] for j in range(START,END): img_vol.append(read_pgm(f'Data\\Brain Volume\\TEST_{j}.pgm')) ground_truth.append(read_pgm(f'Data\\Ground Truth\\TEST_{j}.pgm')) print("Z = ",len(img_vol)) print("Y = ",len(img_vol[0])) print("X = ",len(img_vol[0][0])) global_u = full((len(C),Z,Y,X),0).tolist() local_u = full((len(C),Z,Y,X),0).tolist() final_u = full((len(C),Z,Y,X),0).tolist() for i in range(N): for j in range(Z): for k in range(Y): for l in range(X):
def intersection(lst1, lst2): return list(set(lst1) & set(lst2)) START = 50 END = 52 Z = (END - START) # depth Y = 217 # height X = 181 # col test_img = [] ground_truth = [] for j in range(START, END): test_img.append(read_pgm(f'Data\\Test Results\\TEST_{j}.pgm')) ground_truth.append(read_pgm(f'Data\\Ground Truth\\TEST_{j}.pgm')) correct_classified = 0 mis_classified = 0 # Misclassification Error for j in range(Z): for k in range(Y): for l in range(X): if ground_truth[j][k][l] in [0, 1, 2, 3]: if ground_truth[j][k][l] == test_img[j][k][l]: correct_classified += 1 else: mis_classified += 1