示例#1
0
googleTile = {'tx': 68, 'ty': 42}
tileBounds = {
    'minx': 1252344.271424327,
    'miny': 6574807.42497772,
    'maxx': 1565430.3392804079,
    'maxy': 6887893.492833804
}
quadKey = "1202120"

result = gm.LatLonToMeters(geographic['lat'], geographic['lon'])
print(result)

result = gm.MetersToLatLon(meters['mx'], meters['my'])
print(result)

result = gm.MetersToPixels(meters['mx'], meters['my'], zoom)
print(result)

result = gm.PixelsToTile(pixels['px'], pixels['py'])
print(result)

result = gm.PixelsToMeters(pixels['px'], pixels['py'], zoom)
print(result)

result = gm.TileBounds(tile['tx'], tile['ty'], zoom)
print(result)

result = gm.LatLonToTile(geographic['lat'], geographic['lon'], zoom)
print(result)

result = gm.MetersToTile(meters['mx'], meters['my'], zoom)
示例#2
0
def pdfer(data, page_size=PAGE_SIZES['letter'], output='pdf'):

    shape_overlays = data.get('shape_overlays')
    point_overlays = data.get('point_overlays')

    grid = {'zoom': data.get('zoom')}
    center_lon, center_lat = data['center']
    center_tile_x, center_tile_y = tileXY(float(center_lat), float(center_lon),
                                          int(data['zoom']))

    dim_across, dim_up = data['dimensions']

    if dim_across > dim_up:
        page_height, page_width, tiles_up, tiles_across = page_size
    else:
        page_width, page_height, tiles_across, tiles_up = page_size

    min_tile_x = center_tile_x - (tiles_across / 2)
    min_tile_y = center_tile_y - (tiles_up / 2)
    max_tile_x = min_tile_x + tiles_across
    max_tile_y = min_tile_y + tiles_up

    # Get base layer tiles
    base_pattern = 'http://d.tile.stamen.com/toner/{z}/{x}/{y}.png'
    if data.get('base_tiles'):
        base_pattern = data['base_tiles']

    base_links = generateLinks(base_pattern, grid['zoom'], min_tile_x,
                               min_tile_y, max_tile_x, max_tile_y)

    base_names = dl_write_all(base_links, 'base')

    # Get overlay tiles
    overlay_pattern = None
    if data.get('overlay_tiles'):
        overlay_pattern = data['overlay_tiles']
        overlay_links = generateLinks(overlay_pattern, grid['zoom'],
                                      min_tile_x, min_tile_y, max_tile_x,
                                      max_tile_y)

        overlay_names = dl_write_all(overlay_links, 'overlay')

    now = datetime.now()
    date_string = datetime.strftime(now, '%Y-%m-%d_%H-%M-%S')
    outp_name = os.path.join('/tmp', '{0}.png'.format(date_string))
    base_image_names = ['-'.join(l.split('/')[-3:]) for l in base_names]
    base_image_names = sorted([i.split('-')[-3:] for i in base_image_names],
                              key=itemgetter(1))

    for parts in base_image_names:
        z, x, y = parts
        y = y.rstrip('.png').rstrip('.jpg')
        z = z.rsplit('_', 1)[1]
        key = '-'.join([z, x, y])
        grid[key] = {'bbox': tileEdges(float(x), float(y), int(z))}

    keys = sorted(grid.keys())

    mercator = GlobalMercator()
    bb_poly = None

    bmin_rx = None
    bmin_ry = None

    if shape_overlays or point_overlays:
        polys = []
        for k, v in grid.items():
            try:
                one, two, three, four = grid[k]['bbox']
                polys.append(box(two, one, four, three))
            except TypeError:
                pass
        mpoly = MultiPolygon(polys)
        bb_poly = box(*mpoly.bounds)
        min_key = keys[0]
        max_key = keys[-2]
        bminx, bminy = grid[min_key]['bbox'][0], grid[min_key]['bbox'][1]
        bmaxx, bmaxy = grid[max_key]['bbox'][2], grid[max_key]['bbox'][3]
        bmin_mx, bmin_my = mercator.LatLonToMeters(bminx, bminy)
        bmax_mx, bmax_my = mercator.LatLonToMeters(bmaxx, bmaxy)
        bmin_px, bmin_py = mercator.MetersToPixels(bmin_mx, bmin_my,
                                                   float(grid['zoom']))
        bmax_px, bmax_py = mercator.MetersToPixels(bmax_mx, bmax_my,
                                                   float(grid['zoom']))
        bmin_rx, bmin_ry = mercator.PixelsToRaster(bmin_px, bmin_py,
                                                   int(grid['zoom']))

        if shape_overlays:
            all_polys = []
            for shape_overlay in shape_overlays:
                shape_overlay = json.loads(shape_overlay)
                if shape_overlay.get('geometry'):
                    shape_overlay = shape_overlay['geometry']
                coords = shape_overlay['coordinates'][0]
                all_polys.append(Polygon(coords))
            mpoly = MultiPolygon(all_polys)

            one, two, three, four, five = list(
                box(*mpoly.bounds).exterior.coords)

            left, right = LineString([one, two]), LineString([three, four])
            top, bottom = LineString([two, three]), LineString([four, five])

            left_to_right = left.distance(right)
            top_to_bottom = top.distance(bottom)

            if left_to_right > top_to_bottom:
                page_height, page_width, _, _ = page_size
            else:
                page_width, page_height, _, _ = page_size

            center_lon, center_lat = list(mpoly.centroid.coords)[0]

        if point_overlays:
            all_points = []

            for point_overlay in point_overlays:
                point_overlay = json.loads(point_overlay)
                for p in point_overlay['points']:
                    if p[0] and p[1]:
                        all_points.append(p)

            mpoint = MultiPoint(all_points)
            center_lon, center_lat = list(mpoint.centroid.coords)[0]

            one, two, three, four, five = list(
                box(*mpoint.bounds).exterior.coords)

            left, right = LineString([one, two]), LineString([three, four])
            top, bottom = LineString([two, three]), LineString([four, five])

            left_to_right = left.distance(right)
            top_to_bottom = top.distance(bottom)

            if left_to_right > top_to_bottom:
                page_height, page_width, _, _ = page_size
            else:
                page_width, page_height, _, _ = page_size

            center_lon, center_lat = list(mpoint.centroid.coords)[0]

            print(center_lon, center_lat)

    arrays = []
    for k, g in groupby(base_image_names, key=itemgetter(1)):
        images = list(g)
        fnames = ['/tmp/%s' % ('-'.join(f)) for f in images]
        array = []
        for img in fnames:
            i = cv2.imread(img, -1)
            if isinstance(i, type(None)):
                i = np.zeros((256, 256, 4), np.uint8)
            elif i.shape[2] != 4:
                i = cv2.cvtColor(cv2.imread(img), cv2.COLOR_BGR2BGRA)
            array.append(i)
        arrays.append(np.vstack(array))
    outp = np.hstack(arrays)
    cv2.imwrite(outp_name, outp)
    if overlay_pattern:
        overlay_outp_name = os.path.join('/tmp',
                                         'overlay_{0}.png'.format(date_string))
        overlay_image_names = [
            '-'.join(l.split('/')[-3:]) for l in overlay_names
        ]
        overlay_image_names = sorted(
            [i.split('-')[-3:] for i in overlay_image_names],
            key=itemgetter(1))
        arrays = []
        for k, g in groupby(overlay_image_names, key=itemgetter(1)):
            images = list(g)
            fnames = ['/tmp/%s' % ('-'.join(f)) for f in images]
            array = []
            for img in fnames:
                i = cv2.imread(img, -1)
                if isinstance(i, type(None)):
                    i = np.zeros((256, 256, 4), np.uint8)
                elif i.shape[2] != 4:
                    i = cv2.cvtColor(cv2.imread(img), cv2.COLOR_BGR2BGRA)
                array.append(i)
            arrays.append(np.vstack(array))
            nuked = [os.remove(f) for f in fnames]
        outp = np.hstack(arrays)
        cv2.imwrite(overlay_outp_name, outp)
        base = cv2.imread(outp_name, -1)
        overlay = cv2.imread(overlay_outp_name, -1)
        overlay_g = cv2.cvtColor(overlay, cv2.COLOR_BGR2GRAY)
        ret, mask = cv2.threshold(overlay_g, 10, 255, cv2.THRESH_BINARY)
        inverted = cv2.bitwise_not(mask)
        overlay = cv2.bitwise_not(overlay, overlay, mask=inverted)

        base_alpha = 0.55
        overlay_alpha = 1

        for channel in range(3):
            x, y, d = overlay.shape
            base[:,:,channel] = (base[:,:,channel] * base_alpha + \
                                     overlay[:,:,channel] * overlay_alpha * \
                                     (1 - base_alpha)) / \
                                     (base_alpha + overlay_alpha * (1 - base_alpha))

        cv2.imwrite(outp_name, base)

    ###########################################################################
    # Code below here is for drawing vector layers within the PDF             #
    # Leaving it in just because it was a pain to come up with the first time #
    ###########################################################################

    if shape_overlays or point_overlays:

        im = cairo.ImageSurface.create_from_png(outp_name)
        ctx = cairo.Context(im)

        if shape_overlays:
            for shape_overlay in shape_overlays:
                shape_overlay = json.loads(shape_overlay)
                if shape_overlay.get('geometry'):
                    shape_overlay = shape_overlay['geometry']
                color = hex_to_rgb('#f06eaa')
                coords = shape_overlay['coordinates'][0]
                x, y = get_pixel_coords(coords[0], grid['zoom'], bmin_rx,
                                        bmin_ry)
                ctx.move_to(x, y)
                ctx.set_line_width(4.0)
                red, green, blue = [float(c) for c in color]
                ctx.set_source_rgba(red / 255, green / 255, blue / 255, 0.3)
                for p in coords[1:]:
                    x, y = get_pixel_coords(p, grid['zoom'], bmin_rx, bmin_ry)
                    ctx.line_to(x, y)
                ctx.close_path()
                ctx.fill()
                ctx.set_source_rgba(red / 255, green / 255, blue / 255, 0.5)
                for p in coords[1:]:
                    x, y = get_pixel_coords(p, grid['zoom'], bmin_rx, bmin_ry)
                    ctx.line_to(x, y)
                ctx.close_path()
                ctx.stroke()
        ctx.set_line_width(2.0)

        if point_overlays:
            for point_overlay in point_overlays:
                point_overlay = json.loads(point_overlay)
                color = hex_to_rgb(point_overlay['color'])
                for p in point_overlay['points']:
                    if p[0] and p[1]:
                        pt = Point((float(p[0]), float(p[1])))
                        if bb_poly.contains(pt):
                            nx, ny = get_pixel_coords(p, grid['zoom'], bmin_rx,
                                                      bmin_ry)
                            red, green, blue = [float(c) for c in color]
                            ctx.set_source_rgba(red / 255, green / 255,
                                                blue / 255, 0.6)
                            ctx.arc(
                                nx, ny, 5.0, 0,
                                50)  # args: center-x, center-y, radius, ?, ?
                            ctx.fill()
                            ctx.arc(nx, ny, 5.0, 0, 50)
                            ctx.stroke()
        im.write_to_png(outp_name)
    scale = 1

    # Crop image from center

    center_point_x, center_point_y = latlon2xy(float(center_lat),
                                               float(center_lon),
                                               float(data['zoom']))

    offset_x = (center_point_x - float(center_tile_x)) + 50
    offset_y = (center_point_y - float(center_tile_y)) - 50

    outp_image = cv2.imread(outp_name, -1)
    pixels_up, pixels_across, channels = outp_image.shape
    center_x, center_y = (pixels_across / 2) + offset_x, (pixels_up /
                                                          2) + offset_y
    start_y, end_y = center_y - (page_height / 2), center_y + (page_height / 2)
    start_x, end_x = center_x - (page_width / 2), center_x + (page_width / 2)

    cv2.imwrite(outp_name, outp_image[start_y:end_y, start_x:end_x])

    if output == 'pdf':
        outp_file_name = outp_name.rstrip('.png') + '.pdf'

        pdf = cairo.PDFSurface(outp_file_name, page_width, page_height)
        ctx = cairo.Context(pdf)
        image = cairo.ImageSurface.create_from_png(outp_name)
        ctx.set_source_surface(image)
        ctx.paint()
        pdf.finish()
    elif output == 'jpeg':
        outp_file_name = outp_name.rstrip('.png') + '.jpg'
        jpeg = cv2.cvtColor(cv2.imread(outp_name, -1), cv2.COLOR_RGBA2RGB)
        cv2.imwrite(outp_file_name, jpeg)
    return outp_file_name
示例#3
0
class TileGrid(object):
    #def __init__(self, parentgeometry, bearing = 0.0, zoomlevel = 16, lat = dec.Decimal('32.829608'), lon = dec.Decimal('35.080498')):
    #def __init__(self, parentgeometry, bearing = 0.0, zoomlevel = 16, lat = dec.Decimal('32.330347'), lon = dec.Decimal('34.851395')):
    def __init__(self,
                 bearing=0.0,
                 zoomlevel=16,
                 lat=decimal.Decimal('32.018300'),
                 lon=decimal.Decimal('34.898161'),
                 parent=None):
        #set initial values
        self.parent = parent
        self.bearingSensitivity = decimal.Decimal('0.00001')
        self.bearing = bearing
        self.zoomlevel = zoomlevel
        self.lat = lat
        self.lon = lon
        self.gx, self.gy = None, None
        self.velocity = 0.0

        self.sysPath = os.path.join(sys.path[0], "")

        self.mapPath = self.sysPath
        self.maxZoomLevel = 16

        self.destlat = decimal.Decimal('32.776250')
        self.destlon = decimal.Decimal('35.028946')

        self.distance = 0

        self.setBounds(parent.geometry().width(), parent.geometry().height())

        self.halfboundx = math.ceil(self.boundx / 2)
        self.halfboundy = math.ceil(self.boundy / 2)

        #make GlobalMercator instance
        self.mercator = GlobalMercator()
        #        create pathways
        self.refresh()

    def setMapPath(self, path):
        if path != "":
            self.mapPath = path + "/"
        print self.mapPath

    def setBounds(self, newx, newy):
        self.boundx, self.boundy = newx, newy
        #        adding 16px to halfbounds height and width to display icons
        self.halfboundx = int(math.ceil(self.boundx / 2)) + 31
        self.halfboundy = int(math.ceil(self.boundy / 2)) + 31

    def getOffset(self):
        'get pixel offset of coordinates from 0,0 of tile'
        offpx = self.px - self.tx * self.mercator.tileSize
        #the y pixel coordinate system begins from top
        offpy = self.mercator.tileSize - (self.py -
                                          self.ty * self.mercator.tileSize)
        return offpx, offpy

    def moveTo(self, lat, lon, calculateBearing=True):
        'move position to lat, lon and update all properties'
        #update bearing from previous position
        if calculateBearing:
            if abs(lon - self.lon) > self.bearingSensitivity \
            or abs(lat - self.lat) > self.bearingSensitivity:
                self.bearing = math.degrees(
                    math.atan2(lon - self.lon, lat - self.lat))
                if self.bearing < 0:
                    self.bearing += 360

        self.lat = lat
        self.lon = lon

        #get meters from lat/lon
        mx, my = self.mercator.LatLonToMeters(float(self.lat), float(self.lon))

        #dx, dy = self.mercator.LatLonToMeters( float(self.destlat), float(self.destlon) )

        #self.distance = math.sqrt(math.pow(mx-dx, 2) + math.pow(my-dy, 2 ))

        #get pixels from meters
        self.px, self.py = self.mercator.MetersToPixels(mx, my, self.zoomlevel)

        #get tile from pixels
        self.tx, self.ty = self.mercator.PixelsToTile(int(self.px),
                                                      int(self.py))

        #get google tile
        self.gx, self.gy = self.mercator.GoogleTile(self.tx, self.ty,
                                                    self.zoomlevel)

        #update offset of tile
        self.offpx, self.offpy = self.getOffset()

        #TODO:  calculate loadRect bounds for peripherial tiles

        self.sizex = int(math.ceil(self.boundx / self.mercator.tileSize)) + 1
        self.sizey = int(math.ceil(self.boundy / self.mercator.tileSize)) + 1

        halfdeltax = int(math.ceil(self.sizex / 2)) + 1
        halfdeltay = int(math.ceil(self.sizey / 2)) + 1

        self.images = set()

        offtilex = halfdeltax * self.mercator.tileSize + self.offpx
        for x in range(self.gx - halfdeltax, self.gx + halfdeltax + 1):
            offtiley = halfdeltay * self.mercator.tileSize + self.offpy
            for y in range(self.gy - halfdeltay, self.gy + halfdeltay + 1):
                fname = "%i/gm_%i_%i_%i.png" % (self.zoomlevel, x, y,
                                                self.zoomlevel)
                if not QtCore.QFile.exists(self.mapPath + fname):
                    fname = "404.png"
                self.images.add((QtCore.QPointF(-offtilex, -offtiley), fname))
                offtiley -= self.mercator.tileSize
            offtilex -= self.mercator.tileSize
#            print fname

        self.bounds = {
            'TL': (self.px - self.halfboundx, self.py - self.halfboundy),
            'TR': (self.px + self.halfboundx, self.py - self.halfboundy),
            'BR': (self.px + self.halfboundx, self.py + self.halfboundy),
            'BL': (self.px - self.halfboundx, self.py + self.halfboundy)
        }

        self.pathways = QtGui.QPolygonF()
        #        create waypoints icons
        self.visible_waypoints = set()
        for wp in self.waypoints_pixels:
            x = wp[0] - self.px
            y = self.py - wp[1]
            self.pathways.append(QtCore.QPointF(x, y))
            if self.isVisible(wp):
                self.visible_waypoints.add(QtCore.QPointF(x - 15, y - 32))

#        print self.waypoints_pixels

    def isVisible(self, wp):
        return  wp[0] > self.bounds['TL'][0] and \
                wp[0] < self.bounds['TR'][0] and \
                wp[1] > self.bounds['TL'][1] and \
                wp[1] < self.bounds['BL'][1]

    def refresh(self):
        self.waypoints_pixels = set()
        for wp in self.parent.waypoint:
            wpm = self.mercator.LatLonToMeters(wp[0], wp[1])
            wppx = self.mercator.MetersToPixels(wpm[0], wpm[1], self.zoomlevel)
            self.waypoints_pixels.add(wppx)
        self.moveTo(self.lat, self.lon)

    def setZoom(self, zoom):
        self.zoomlevel = zoom
        self.refresh()

    def zoomIn(self):
        if self.zoomlevel < self.maxZoomLevel:
            self.zoomlevel += 1
            self.refresh()

    def zoomOut(self):
        if self.zoomlevel > 0:
            self.zoomlevel -= 1
            self.refresh()

    def setBearing(self, bear):
        self.bearing = bear

    def setVelocity(self, vel):
        self.velocity = vel