示例#1
0
def deriveMetric(input, first, second, oper):
    # derive the metric
    derivor = DeriveMetricOperation(input, first, second, oper)
    derived = derivor.processData().get(0)
    newName = derived.getMetrics().toArray()[0]
    # merge new metric with the trial
    merger = MergeTrialsOperation(input)
    merger.addInput(derived)
    merged = merger.processData().get(0)
    #print "new metric: " + newName
    return merged, newName
示例#2
0
def scaleMetric(input, metric, value, oper):
    # derive the metric
    scaler = ScaleMetricOperation(input, metric, value, oper)
    scaled = scaler.processData().get(0)
    newName = scaled.getMetrics().toArray()[0]
    # merge new metric with the trial
    merger = MergeTrialsOperation(input)
    merger.addInput(scaled)
    merged = merger.processData().get(0)
    #print "new metric: " + newName
    return merged, newName
示例#3
0
def deriveMetric(input, first, second, oper):
    # derive the metric
    derivor = DeriveMetricOperation(input, first, second, oper)
    # check to see if this metric already has been derived
    merged = None
    newName = None
    if (derivor.exists()):
        print "Exists: ", newName
        merged = input
        newName = derivor.getNewName()
    else:
        derived = derivor.processData().get(0)
        newName = derivor.getNewName()
        # merge new metric with the trial
        merger = MergeTrialsOperation(input)
        merger.addInput(derived)
        merged = merger.processData().get(0)
        # save the newly derived metric
        # saver = SaveResultOperation(derived)
        # saver.setForceOverwrite(False)
        # saver.processData()
    print "new metric: ", newName
    return merged, newName