示例#1
0
def main():
    args = parse_args()

    _, log_file_exist = initialize_logging(
        logging_dir_path=args.save_dir,
        logging_file_name=args.logging_file_name,
        script_args=args,
        log_packages=args.log_packages,
        log_pip_packages=args.log_pip_packages)

    ctx, batch_size = prepare_mx_context(num_gpus=args.num_gpus,
                                         batch_size=args.batch_size)

    net = prepare_model(model_name=args.model,
                        use_pretrained=args.use_pretrained,
                        pretrained_model_file_path=args.resume.strip(),
                        dtype=args.dtype,
                        classes=args.num_classes,
                        in_channels=args.in_channels,
                        do_hybridize=(not args.calc_flops),
                        ctx=ctx)

    assert (hasattr(net, "in_size"))
    input_image_size = net.in_size

    ds_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
    val_data = get_val_data_source(dataset_metainfo=ds_metainfo,
                                   dataset_dir=args.data_dir,
                                   batch_size=batch_size,
                                   num_workers=args.num_workers,
                                   input_image_size=input_image_size,
                                   resize_inv_factor=args.resize_inv_factor)
    batch_fn = get_batch_fn(use_imgrec=ds_metainfo.use_imgrec)

    assert (args.use_pretrained or args.resume.strip() or args.calc_flops_only)
    test(
        net=net,
        val_data=val_data,
        batch_fn=batch_fn,
        data_source_needs_reset=ds_metainfo.use_imgrec,
        val_metric=get_composite_metric(ds_metainfo.val_metric_names),
        dtype=args.dtype,
        ctx=ctx,
        input_image_size=input_image_size,
        in_channels=args.in_channels,
        # calc_weight_count=(not log_file_exist),
        calc_weight_count=True,
        calc_flops=args.calc_flops,
        calc_flops_only=args.calc_flops_only,
        extended_log=True)
示例#2
0
def parse_args():
    parser = argparse.ArgumentParser(
        description="Evaluate a model for image classification (Gluon/CIFAR)",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "--dataset",
        type=str,
        default="CIFAR10",
        help="dataset name. options are CIFAR10, CIFAR100, and SVHN")

    args, _ = parser.parse_known_args()
    dataset_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
    work_dir_path = os.path.join("..", "imgclsmob_data")
    dataset_metainfo.add_dataset_parser_arguments(parser, work_dir_path)

    add_eval_cls_parser_arguments(parser)

    args = parser.parse_args()
    return args
示例#3
0
def main():
    args = parse_args()
    args.seed = init_rand(seed=args.seed)

    _, log_file_exist = initialize_logging(
        logging_dir_path=args.save_dir,
        logging_file_name=args.logging_file_name,
        script_args=args,
        log_packages=args.log_packages,
        log_pip_packages=args.log_pip_packages)

    ctx, batch_size = prepare_mx_context(num_gpus=args.num_gpus,
                                         batch_size=args.batch_size)

    net = prepare_model(model_name=args.model,
                        use_pretrained=args.use_pretrained,
                        pretrained_model_file_path=args.resume.strip(),
                        dtype=args.dtype,
                        tune_layers=args.tune_layers,
                        classes=args.num_classes,
                        in_channels=args.in_channels,
                        do_hybridize=(not args.not_hybridize),
                        ctx=ctx)

    assert (hasattr(net, "classes"))
    num_classes = net.classes if hasattr(net, "classes") else 10

    ds_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
    train_data = get_train_data_source(dataset_metainfo=ds_metainfo,
                                       dataset_dir=args.data_dir,
                                       batch_size=batch_size,
                                       num_workers=args.num_workers)
    val_data = get_val_data_source(dataset_metainfo=ds_metainfo,
                                   dataset_dir=args.data_dir,
                                   batch_size=batch_size,
                                   num_workers=args.num_workers)
    batch_fn = get_batch_fn(use_imgrec=ds_metainfo.use_imgrec)

    num_training_samples = len(
        train_data._dataset
    ) if not ds_metainfo.use_imgrec else ds_metainfo.num_training_samples
    trainer, lr_scheduler = prepare_trainer(
        net=net,
        optimizer_name=args.optimizer_name,
        wd=args.wd,
        momentum=args.momentum,
        lr_mode=args.lr_mode,
        lr=args.lr,
        lr_decay_period=args.lr_decay_period,
        lr_decay_epoch=args.lr_decay_epoch,
        lr_decay=args.lr_decay,
        target_lr=args.target_lr,
        poly_power=args.poly_power,
        warmup_epochs=args.warmup_epochs,
        warmup_lr=args.warmup_lr,
        warmup_mode=args.warmup_mode,
        batch_size=batch_size,
        num_epochs=args.num_epochs,
        num_training_samples=num_training_samples,
        dtype=args.dtype,
        gamma_wd_mult=args.gamma_wd_mult,
        beta_wd_mult=args.beta_wd_mult,
        bias_wd_mult=args.bias_wd_mult,
        state_file_path=args.resume_state)

    if args.save_dir and args.save_interval:
        param_names = ds_metainfo.val_metric_capts + ds_metainfo.train_metric_capts + [
            "Train.Loss", "LR"
        ]
        lp_saver = TrainLogParamSaver(
            checkpoint_file_name_prefix="{}_{}".format(args.dataset.lower(),
                                                       args.model),
            last_checkpoint_file_name_suffix="last",
            best_checkpoint_file_name_suffix=None,
            last_checkpoint_dir_path=args.save_dir,
            best_checkpoint_dir_path=None,
            last_checkpoint_file_count=2,
            best_checkpoint_file_count=2,
            checkpoint_file_save_callback=save_params,
            checkpoint_file_exts=(".params", ".states"),
            save_interval=args.save_interval,
            num_epochs=args.num_epochs,
            param_names=param_names,
            acc_ind=ds_metainfo.saver_acc_ind,
            # bigger=[True],
            # mask=None,
            score_log_file_path=os.path.join(args.save_dir, "score.log"),
            score_log_attempt_value=args.attempt,
            best_map_log_file_path=os.path.join(args.save_dir, "best_map.log"))
    else:
        lp_saver = None

    train_net(batch_size=batch_size,
              num_epochs=args.num_epochs,
              start_epoch1=args.start_epoch,
              train_data=train_data,
              val_data=val_data,
              batch_fn=batch_fn,
              data_source_needs_reset=ds_metainfo.use_imgrec,
              dtype=args.dtype,
              net=net,
              trainer=trainer,
              lr_scheduler=lr_scheduler,
              lp_saver=lp_saver,
              log_interval=args.log_interval,
              mixup=args.mixup,
              mixup_epoch_tail=args.mixup_epoch_tail,
              label_smoothing=args.label_smoothing,
              num_classes=num_classes,
              grad_clip_value=args.grad_clip,
              batch_size_scale=args.batch_size_scale,
              val_metric=get_composite_metric(ds_metainfo.val_metric_names),
              train_metric=get_composite_metric(
                  ds_metainfo.train_metric_names),
              opt_metric_name=ds_metainfo.val_metric_names[
                  ds_metainfo.saver_acc_ind],
              ctx=ctx)
示例#4
0
def parse_args():
    parser = argparse.ArgumentParser(
        description='Train a model for image classification (Gluon/CIFAR)',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--dataset',
                        type=str,
                        default="CIFAR10",
                        help='dataset name. options are CIFAR10 and CIFAR100')

    args, _ = parser.parse_known_args()
    dataset_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
    work_dir_path = os.path.join("..", "imgclsmob_data")
    dataset_metainfo.add_dataset_parser_arguments(parser, work_dir_path)

    parser.add_argument(
        '--model',
        type=str,
        required=True,
        help='type of model to use. see model_provider for options.')
    parser.add_argument('--use-pretrained',
                        action='store_true',
                        help='enable using pretrained model from gluon.')
    parser.add_argument('--dtype',
                        type=str,
                        default='float32',
                        help='data type for training')
    parser.add_argument('--not-hybridize',
                        action='store_true',
                        help='do not hybridize model')
    parser.add_argument(
        '--resume',
        type=str,
        default='',
        help='resume from previously saved parameters if not None')
    parser.add_argument(
        '--resume-state',
        type=str,
        default='',
        help='resume from previously saved optimizer state if not None')

    parser.add_argument('--num-gpus',
                        type=int,
                        default=0,
                        help='number of gpus to use.')
    parser.add_argument('-j',
                        '--num-data-workers',
                        dest='num_workers',
                        default=4,
                        type=int,
                        help='number of preprocessing workers')

    parser.add_argument('--batch-size',
                        type=int,
                        default=128,
                        help='training batch size per device (CPU/GPU).')
    parser.add_argument('--batch-size-scale',
                        type=int,
                        default=1,
                        help='manual batch-size increasing factor.')
    parser.add_argument('--num-epochs',
                        type=int,
                        default=200,
                        help='number of training epochs.')
    parser.add_argument(
        '--start-epoch',
        type=int,
        default=1,
        help='starting epoch for resuming, default is 1 for new training')
    parser.add_argument('--attempt',
                        type=int,
                        default=1,
                        help='current number of training')

    parser.add_argument('--optimizer-name',
                        type=str,
                        default='nag',
                        help='optimizer name')
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate')
    parser.add_argument(
        '--lr-mode',
        type=str,
        default='cosine',
        help='learning rate scheduler mode. options are step, poly and cosine')
    parser.add_argument('--lr-decay',
                        type=float,
                        default=0.1,
                        help='decay rate of learning rate')
    parser.add_argument(
        '--lr-decay-period',
        type=int,
        default=0,
        help=
        'interval for periodic learning rate decays. default is 0 to disable.')
    parser.add_argument('--lr-decay-epoch',
                        type=str,
                        default='40,60',
                        help='epoches at which learning rate decays')
    parser.add_argument('--target-lr',
                        type=float,
                        default=1e-8,
                        help='ending learning rate')
    parser.add_argument('--poly-power',
                        type=float,
                        default=2,
                        help='power value for poly LR scheduler')
    parser.add_argument('--warmup-epochs',
                        type=int,
                        default=0,
                        help='number of warmup epochs.')
    parser.add_argument('--warmup-lr',
                        type=float,
                        default=1e-8,
                        help='starting warmup learning rate')
    parser.add_argument(
        '--warmup-mode',
        type=str,
        default='linear',
        help=
        'learning rate scheduler warmup mode. options are linear, poly and constant'
    )
    parser.add_argument('--momentum',
                        type=float,
                        default=0.9,
                        help='momentum value for optimizer')
    parser.add_argument('--wd',
                        type=float,
                        default=0.0001,
                        help='weight decay rate')
    parser.add_argument('--gamma-wd-mult',
                        type=float,
                        default=1.0,
                        help='weight decay multiplier for batchnorm gamma')
    parser.add_argument('--beta-wd-mult',
                        type=float,
                        default=1.0,
                        help='weight decay multiplier for batchnorm beta')
    parser.add_argument('--bias-wd-mult',
                        type=float,
                        default=1.0,
                        help='weight decay multiplier for bias')
    parser.add_argument('--grad-clip',
                        type=float,
                        default=None,
                        help='max_norm for gradient clipping')
    parser.add_argument('--label-smoothing',
                        action='store_true',
                        help='use label smoothing')

    parser.add_argument('--mixup',
                        action='store_true',
                        help='use mixup strategy')
    parser.add_argument(
        '--mixup-epoch-tail',
        type=int,
        default=20,
        help='number of epochs without mixup at the end of training')

    parser.add_argument('--log-interval',
                        type=int,
                        default=200,
                        help='number of batches to wait before logging.')
    parser.add_argument(
        '--save-interval',
        type=int,
        default=4,
        help='saving parameters epoch interval, best model will always be saved'
    )
    parser.add_argument('--save-dir',
                        type=str,
                        default='',
                        help='directory of saved models and log-files')
    parser.add_argument('--logging-file-name',
                        type=str,
                        default='train.log',
                        help='filename of training log')

    parser.add_argument('--seed',
                        type=int,
                        default=-1,
                        help='Random seed to be fixed')
    parser.add_argument('--log-packages',
                        type=str,
                        default='mxnet',
                        help='list of python packages for logging')
    parser.add_argument('--log-pip-packages',
                        type=str,
                        default='mxnet-cu100',
                        help='list of pip packages for logging')

    parser.add_argument('--tune-layers',
                        type=str,
                        default='',
                        help='Regexp for selecting layers for fine tuning')
    args = parser.parse_args()
    return args
示例#5
0
def parse_args():
    parser = argparse.ArgumentParser(
        description="Train a model for image classification (Gluon/ImageNet1K)",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "--dataset",
        type=str,
        default="ImageNet1K_rec",
        help="dataset name. options are ImageNet1K and ImageNet1K_rec")

    args, _ = parser.parse_known_args()
    dataset_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
    work_dir_path = os.path.join("..", "imgclsmob_data")
    dataset_metainfo.add_dataset_parser_arguments(parser, work_dir_path)

    parser.add_argument(
        "--model",
        type=str,
        required=True,
        help="type of model to use. see model_provider for options")
    parser.add_argument(
        "--use-pretrained",
        action="store_true",
        help="enable using pretrained model from gluon")
    parser.add_argument(
        "--dtype",
        type=str,
        default="float32",
        help="data type for training")
    parser.add_argument(
        "--resume",
        type=str,
        default="",
        help="resume from previously saved parameters if not None")
    parser.add_argument(
        "--resume-state",
        type=str,
        default="",
        help="resume from previously saved optimizer state if not None")

    parser.add_argument(
        "--num-gpus",
        type=int,
        default=0,
        help="number of gpus to use")
    parser.add_argument(
        "-j",
        "--num-data-workers",
        dest="num_workers",
        default=4,
        type=int,
        help="number of preprocessing workers")

    parser.add_argument(
        "--batch-size",
        type=int,
        default=512,
        help="training batch size per device (CPU/GPU)")
    parser.add_argument(
        "--batch-size-scale",
        type=int,
        default=1,
        help="manual batch-size increasing factor")
    parser.add_argument(
        "--num-epochs",
        type=int,
        default=120,
        help="number of training epochs")
    parser.add_argument(
        "--start-epoch",
        type=int,
        default=1,
        help="starting epoch for resuming, default is 1 for new training")
    parser.add_argument(
        "--attempt",
        type=int,
        default=1,
        help="current attempt number for training")

    parser.add_argument(
        "--optimizer-name",
        type=str,
        default="nag",
        help="optimizer name")
    parser.add_argument(
        "--lr",
        type=float,
        default=0.1,
        help="learning rate")
    parser.add_argument(
        "--lr-mode",
        type=str,
        default="cosine",
        help="learning rate scheduler mode. options are step, poly and cosine")
    parser.add_argument(
        "--lr-decay",
        type=float,
        default=0.1,
        help="decay rate of learning rate")
    parser.add_argument(
        "--lr-decay-period",
        type=int,
        default=0,
        help="interval for periodic learning rate decays. default is 0 to disable")
    parser.add_argument(
        "--lr-decay-epoch",
        type=str,
        default="40,60",
        help="epoches at which learning rate decays")
    parser.add_argument(
        "--target-lr",
        type=float,
        default=1e-8,
        help="ending learning rate")
    parser.add_argument(
        "--poly-power",
        type=float,
        default=2,
        help="power value for poly LR scheduler")
    parser.add_argument(
        "--warmup-epochs",
        type=int,
        default=0,
        help="number of warmup epochs")
    parser.add_argument(
        "--warmup-lr",
        type=float,
        default=1e-8,
        help="starting warmup learning rate")
    parser.add_argument(
        "--warmup-mode",
        type=str,
        default="linear",
        help="learning rate scheduler warmup mode. options are linear, poly and constant")
    parser.add_argument(
        "--momentum",
        type=float,
        default=0.9,
        help="momentum value for optimizer")
    parser.add_argument(
        "--wd",
        type=float,
        default=0.0001,
        help="weight decay rate")
    parser.add_argument(
        "--gamma-wd-mult",
        type=float,
        default=1.0,
        help="weight decay multiplier for batchnorm gamma")
    parser.add_argument(
        "--beta-wd-mult",
        type=float,
        default=1.0,
        help="weight decay multiplier for batchnorm beta")
    parser.add_argument(
        "--bias-wd-mult",
        type=float,
        default=1.0,
        help="weight decay multiplier for bias")
    parser.add_argument(
        "--grad-clip",
        type=float,
        default=None,
        help="max_norm for gradient clipping")
    parser.add_argument(
        "--label-smoothing",
        action="store_true",
        help="use label smoothing")

    parser.add_argument(
        "--mixup",
        action="store_true",
        help="use mixup strategy")
    parser.add_argument(
        "--mixup-epoch-tail",
        type=int,
        default=20,
        help="number of epochs without mixup at the end of training")

    parser.add_argument(
        "--log-interval",
        type=int,
        default=50,
        help="number of batches to wait before logging")
    parser.add_argument(
        "--save-interval",
        type=int,
        default=4,
        help="saving parameters epoch interval, best model will always be saved")
    parser.add_argument(
        "--save-dir",
        type=str,
        default="",
        help="directory of saved models and log-files")
    parser.add_argument(
        "--logging-file-name",
        type=str,
        default="train.log",
        help="filename of training log")

    parser.add_argument(
        "--seed",
        type=int,
        default=-1,
        help="random seed to be fixed")
    parser.add_argument(
        "--log-packages",
        type=str,
        default="mxnet",
        help="list of python packages for logging")
    parser.add_argument(
        "--log-pip-packages",
        type=str,
        default="mxnet-cu100",
        help="list of pip packages for logging")

    parser.add_argument(
        "--tune-layers",
        type=str,
        default="",
        help="regexp for selecting layers for fine tuning")
    args = parser.parse_args()
    return args