def get_dataset(dataset, args): if dataset.lower() == 'voc': train_dataset = gdata.VOCDetection( splits=[(2007, 'trainval'), (2012, 'trainval')]) val_dataset = gdata.VOCDetection( splits=[(2007, 'test')]) #print(val_dataset.classes) #('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes) elif dataset.lower() == 'coco': train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False) val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False) val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True) elif dataset.lower() == 'pedestrian': lst_dataset = LstDetection('train_val.lst',root=os.path.expanduser('.')) print(len(lst_dataset)) first_img = lst_dataset[0][0] print(first_img.shape) print(lst_dataset[0][1]) train_dataset = LstDetection('train.lst',root=os.path.expanduser('.')) val_dataset = LstDetection('val.lst',root=os.path.expanduser('.')) classs = ('pedestrian',) val_metric = VOC07MApMetric(iou_thresh=0.5,class_names=classs) else: raise NotImplementedError('Dataset: {} not implemented.'.format(dataset)) if args.mixup: from gluoncv.data.mixup import MixupDetection train_dataset = MixupDetection(train_dataset) return train_dataset, val_dataset, val_metric
def get_dataset(dataset, args): if dataset.lower() == 'voc': if 0: train_dataset = gdata.VOCDetection(root='E:/dataset/VOCdevkit', splits=[(2007, 'trainval'), (2012, 'trainval')]) val_dataset = gdata.VOCDetection(root='E:/dataset/VOCdevkit', splits=[(2007, 'test')]) val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes) else: voc_root = 'G:/MSDataset/' #layout same with VOC07 train_dataset = gdata.MSDetection(root=voc_root, splits=[(2007, 'trainval')]) val_dataset = gdata.MSDetection(root=voc_root, splits=[(2007, 'test')]) val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes) elif dataset.lower() == 'coco': train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False) val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False) val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True) else: raise NotImplementedError( 'Dataset: {} not implemented.'.format(dataset)) if args.mixup: from gluoncv.data.mixup import MixupDetection train_dataset = MixupDetection(train_dataset) return train_dataset, val_dataset, val_metric
def get_dataset(dataset, args): if dataset.lower() == 'voc': train_dataset = gdata.VOCDetection( splits=[(2007, 'trainval'), (2012, 'trainval')]) val_dataset = gdata.VOCDetection(splits=[(2007, 'test')]) val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes) elif dataset.lower() == 'coco': train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False) val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False) val_metric = COCODetectionMetric(val_dataset, os.path.join(args.logdir, 'eval'), cleanup=True) else: raise NotImplementedError( 'Dataset: {} not implemented.'.format(dataset)) if cfg.TRAIN.MODE_MIXUP: from gluoncv.data.mixup import MixupDetection train_dataset = MixupDetection(train_dataset) return train_dataset, val_dataset, val_metric
def get_dataset(dataset, args): if dataset.lower() == 'voc': train_dataset = gdata.VOCDetection(root=args.data_path, splits=[(2007, 'trainval'), (2012, 'trainval')]) val_dataset = gdata.VOCDetection(root=args.data_path, splits=[(2007, 'test')]) val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes) elif dataset.lower() == 'coco': #train_dataset = gdata.COCODetection(splits='instances_train2014', use_crowd=False) train_dataset = gdata.COCODetection(root=args.data_path, splits='instances_train2017') val_dataset = gdata.COCODetection(root=args.data_path, splits='instances_val2017', skip_empty=False) val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True) elif dataset.lower() == 'rec': train_dataset = gdata.RecordFileDetection(os.path.join(args.data_path, 'pikachu_train.rec')) val_dataset = gdata.RecordFileDetection(os.path.join(args.data_path, 'pikachu_train.rec')) val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=rec_classes) else: raise NotImplementedError('Dataset: {} not implemented.'.format(dataset)) if args.mixup: from gluoncv.data.mixup import MixupDetection train_dataset = MixupDetection(train_dataset) return train_dataset, val_dataset, val_metric