示例#1
0
    def __init__(self,
                 nclass,
                 pretrained_base=True,
                 partial_bn=True,
                 dropout_ratio=0.8,
                 init_std=0.001,
                 feat_dim=1024,
                 num_segments=1,
                 num_crop=1,
                 **kwargs):
        super(ActionRecInceptionV1, self).__init__()
        self.dropout_ratio = dropout_ratio
        self.init_std = init_std
        self.num_segments = num_segments
        self.num_crop = num_crop
        self.feat_dim = feat_dim

        pretrained_model = googlenet(pretrained=pretrained_base,
                                     partial_bn=partial_bn,
                                     **kwargs)

        self.conv1 = pretrained_model.conv1
        self.maxpool1 = pretrained_model.maxpool1

        self.conv2 = pretrained_model.conv2
        self.conv3 = pretrained_model.conv3
        self.maxpool2 = pretrained_model.maxpool2

        self.inception3a = pretrained_model.inception3a
        self.inception3b = pretrained_model.inception3b
        self.maxpool3 = pretrained_model.maxpool3

        self.inception4a = pretrained_model.inception4a
        self.inception4b = pretrained_model.inception4b
        self.inception4c = pretrained_model.inception4c
        self.inception4d = pretrained_model.inception4d
        self.inception4e = pretrained_model.inception4e
        self.maxpool4 = pretrained_model.maxpool4

        self.inception5a = pretrained_model.inception5a
        self.inception5b = pretrained_model.inception5b

        self.avgpool = nn.AvgPool2D(pool_size=7)
        self.dropout = nn.Dropout(self.dropout_ratio)
        self.output = nn.Dense(
            units=nclass,
            in_units=self.feat_dim,
            weight_initializer=init.Normal(sigma=self.init_std))
        self.output.initialize()
示例#2
0
    def __init__(self, nclass=1000, norm_layer=BatchNorm, num_segments=1,
                 norm_kwargs=None, partial_bn=False, pretrained_base=True,
                 dropout_ratio=0.5, init_std=0.01,
                 ctx=None, **kwargs):
        super(I3D_InceptionV1, self).__init__(**kwargs)

        self.num_segments = num_segments
        self.feat_dim = 1024
        self.dropout_ratio = dropout_ratio
        self.init_std = init_std

        with self.name_scope():
            self.features = nn.HybridSequential(prefix='')

            self.features.add(_make_basic_conv(in_channels=3, channels=64, kernel_size=7, strides=2, padding=3, norm_layer=norm_layer, norm_kwargs=norm_kwargs))
            self.features.add(nn.MaxPool3D(pool_size=(1, 3, 3), strides=(1, 2, 2), padding=(0, 1, 1)))

            if partial_bn:
                if norm_kwargs is not None:
                    norm_kwargs['use_global_stats'] = True
                else:
                    norm_kwargs = {}
                    norm_kwargs['use_global_stats'] = True

            self.features.add(_make_basic_conv(in_channels=64, channels=64, kernel_size=1, norm_layer=norm_layer, norm_kwargs=norm_kwargs))
            self.features.add(_make_basic_conv(in_channels=64, channels=192, kernel_size=3, padding=(1, 1, 1), norm_layer=norm_layer, norm_kwargs=norm_kwargs))
            self.features.add(nn.MaxPool3D(pool_size=(1, 3, 3), strides=(1, 2, 2), padding=(0, 1, 1)))

            self.features.add(_make_Mixed_3a(192, 32, 'Mixed_3a_', norm_layer, norm_kwargs))
            self.features.add(_make_Mixed_3b(256, 64, 'Mixed_3b_', norm_layer, norm_kwargs))
            self.features.add(nn.MaxPool3D(pool_size=3, strides=(2, 2, 2), padding=(1, 1, 1)))

            self.features.add(_make_Mixed_4a(480, 64, 'Mixed_4a_', norm_layer, norm_kwargs))
            self.features.add(_make_Mixed_4b(512, 64, 'Mixed_4b_', norm_layer, norm_kwargs))
            self.features.add(_make_Mixed_4c(512, 64, 'Mixed_4c_', norm_layer, norm_kwargs))
            self.features.add(_make_Mixed_4d(512, 64, 'Mixed_4d_', norm_layer, norm_kwargs))
            self.features.add(_make_Mixed_4e(528, 128, 'Mixed_4e_', norm_layer, norm_kwargs))
            self.features.add(nn.MaxPool3D(pool_size=2, strides=(2, 2, 2)))

            self.features.add(_make_Mixed_5a(832, 128, 'Mixed_5a_', norm_layer, norm_kwargs))
            self.features.add(_make_Mixed_5b(832, 128, 'Mixed_5b_', norm_layer, norm_kwargs))
            self.features.add(nn.GlobalAvgPool3D())

            self.head = nn.HybridSequential(prefix='')
            self.head.add(nn.Dropout(rate=self.dropout_ratio))
            self.output = nn.Dense(units=nclass, in_units=self.feat_dim, weight_initializer=init.Normal(sigma=self.init_std))
            self.head.add(self.output)

            self.features.initialize(ctx=ctx)
            self.head.initialize(ctx=ctx)

            if pretrained_base:
                inceptionv1_2d = googlenet(pretrained=True)
                weights2d = inceptionv1_2d.collect_params()
                weights3d = self.collect_params()
                assert len(weights2d.keys()) == len(weights3d.keys()), 'Number of parameters should be same.'

                dict2d = {}
                for key_id, key_name in enumerate(weights2d.keys()):
                    dict2d[key_id] = key_name

                dict3d = {}
                for key_id, key_name in enumerate(weights3d.keys()):
                    dict3d[key_id] = key_name

                dict_transform = {}
                for key_id, key_name in dict3d.items():
                    dict_transform[dict2d[key_id]] = key_name

                cnt = 0
                for key2d, key3d in dict_transform.items():
                    if 'conv' in key3d:
                        temporal_dim = weights3d[key3d].shape[2]
                        temporal_2d = nd.expand_dims(weights2d[key2d].data(), axis=2)
                        inflated_2d = nd.broadcast_to(temporal_2d, shape=[0, 0, temporal_dim, 0, 0]) / temporal_dim
                        assert inflated_2d.shape == weights3d[key3d].shape, 'the shape of %s and %s does not match. ' % (key2d, key3d)
                        weights3d[key3d].set_data(inflated_2d)
                        cnt += 1
                        print('%s is done with shape: ' % (key3d), weights3d[key3d].shape)
                    if 'batchnorm' in key3d:
                        assert weights2d[key2d].shape == weights3d[key3d].shape, 'the shape of %s and %s does not match. ' % (key2d, key3d)
                        weights3d[key3d].set_data(weights2d[key2d].data())
                        cnt += 1
                        print('%s is done with shape: ' % (key3d), weights3d[key3d].shape)
                    if 'dense' in key3d:
                        cnt += 1
                        print('%s is skipped with shape: ' % (key3d), weights3d[key3d].shape)

                assert cnt == len(weights2d.keys()), 'Not all parameters have been ported, check the initialization.'